植物研究 ›› 2025, Vol. 45 ›› Issue (3): 386-392.doi: 10.7525/j.issn.1673-5102.2025.03.009
徐永杰1, 谭作枰1,2,3, 吴强盛2,3(), 刘小青2,3, 许晓宏2
收稿日期:
2024-06-25
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
吴强盛
E-mail:wuqiangsh@163.com
作者简介:
徐永杰(1981—),男,副研究员,主要从事核桃等经济林栽培生理研究。
基金资助:
Yongjie XU1, Zuoping TAN1,2,3, Qiangsheng WU2,3(), Xiaoqing LIU2,3, Xiaohong XU2
Received:
2024-06-25
Online:
2025-05-20
Published:
2025-05-23
Contact:
Qiangsheng WU
E-mail:wuqiangsh@163.com
摘要:
核桃(Juglans)作为世界重要的经济林木,其生长发育与丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)之间密切关联。核桃根际AMF资源丰富,涵盖了10个属多个种,其多样性受种植模式(如套种)、土壤养分等影响,但深根性特征使核桃成为周围植被AMF繁殖体的储存库,并通过普通菌根网络实现了养分(如磷和碳)的有效再分配。该研究明确了AMF在促进核桃生长、提高成活率、促进养分(特别是磷)吸收,以及增强抗旱性方面的作用机制,并探究了AMF在提高和转移胡桃醌上的潜力。最后,对核桃菌根研究的未来发展方向进行了展望。
中图分类号:
徐永杰, 谭作枰, 吴强盛, 刘小青, 许晓宏. 核桃丛枝菌根真菌多样性及其作用机制研究进展[J]. 植物研究, 2025, 45(3): 386-392.
Yongjie XU, Zuoping TAN, Qiangsheng WU, Xiaoqing LIU, Xiaohong XU. Advances in Diversity of Arbuscular Mycorrhizal Fungi and Their Functional Mechanisms in Walnuts[J]. Bulletin of Botanical Research, 2025, 45(3): 386-392.
1 | LIU M, WANG X Y, ZHANG Y,et al.Chemical composition of walnuts from three regions in China[J].Oil Crop Science,2023,8(1):56-60. |
2 | 孟佳,方晓璞,史宣明,等.我国核桃产业发展现状、问题与建议[J].中国油脂,2023,48(1):84-86. |
MENG J, FANG X P, SHI X M,et al.Situation,problems and suggestions on the development of walnut industry in China[J].China Oil and Fats,2023,48(1):84-86. | |
3 | MA X, WANG W J, ZHENG C,et al.Quality evaluation of walnuts from different regions in China[J].Foods,2023,12(22):4123. |
4 | WANG L T, GEORGE T S, FENG G.Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function[J].New Phytologist,2024,242(4):1529-1533. |
5 | MORTIER E, LAMOTTE O, MARTIN-LAURENT F,et al.Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi:a review[J].Agronomy for Sustainable Development,2020,40(6):43. |
6 | MA W Y, WU Q S, XU Y J,et al.Exploring mycorrhizal fungi in walnut with a focus on physiological roles[J].Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2021, 49(2):12363. |
7 | 卯吉华,李荣波,景跃波,等.核桃园土壤丛枝菌根真菌多样性及接种效应[J].森林与环境学报,2022,42(1):71-80. |
MAO J H, LI R B, JING Y B,et al.Arbuscular mycorrhizal fungi associated with walnut trees and their effect on seedling growth[J].Journal of Forest and Environment,2022,42(1):71-80. | |
8 | ACHATZ M, RILLIG M C.Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field[J].Soil Biology and Biochemistry,2014,78:76-82. |
9 | HE W X, SUN Q F, HASHEM A,et al.Sod culture with Vicia villosa alters the diversity of fungal communities in walnut orchards for sustainability development[J].Sustainability,2023,15(13):10731. |
10 | JI L, ZHANG Y, YANG Y C,et al.Long-term effects of mixed planting on arbuscular mycorrhizal fungal communities in the roots and soils of Juglans mandshurica plantations[J].BMC Microbiology,2020,20(1):304. |
11 | THIOYE B, LEGRAS M, CASTEL L,et al.Understanding arbuscular mycorrhizal colonization in walnut plantations:the contribution of cover crops and soil microbial communities[J].Agriculture,2022,12(1):1. |
12 | 刘滨.渭北黄土区不同核桃农林复合系统化感作用及其外生菌根群落研究[D].杨凌:西北农林科技大学,2022. |
LIU B.Allelopathy and ectomycorrhiza of different walnut agroforestry systems in the loess area of northern Wei River[D].Yangling:Northwest A&F University,2022. | |
13 | 李荣波,景跃波,卯吉华,等.云南核桃不同套种模式根际丛枝菌根真菌多样性[J].北方园艺,2021(5):84-93. |
LI R B, JING Y B, MAO J H,et al.Arbuscular mycorrhizal fungi diversity of walnut orchards in Yunnan under different intercropping systems[J].Northern Horticulture,2021(5):84-93. | |
14 | VAN TUINEN D, TRANCHAND E, HIRISSOU F,et al.Carbon partitioning in a walnut-maize agroforestry system through arbuscular mycorrhizal fungi[J].Rhizosphere,2020,15:100230. |
15 | HART M M, READER R J.Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi[J].New Phytologist,2002,153:335-344. |
16 | GUARDIOLA-MÁRQUEZ C E, PACHECO A, MORA-GODÍNEZ S,et al. Septoglomus species dominate the arbuscular mycorrhiza of five crop plants in an arid region of northern Mexico[J].Symbiosis,2022,87:93-106. |
17 | 李荣波,景跃波,卯吉华,等.不同套种模式云南核桃丛枝菌根与土壤因子的相关性研究[J].西部林业科学,2021,50(1):71-78,84. |
LI R B, JING Y B, MAO J H,et al.Correlation between arbuscular mycorrhizal in walnut orchards under different intercropping with soil factors[J].Journal of West China Forestry Science,2021,50(1):71-78,84. | |
18 | WANG F, ZHANG L, ZHOU J C,et al.Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi:processes and ecological functions[J].Plant and Soil,2022,481(1):1-22. |
19 | DOLCET-SANJUAN R, CLAVERIA E, CAMPRUBÍ A,et al.Micropropagation of walnut trees (Juglans regia L) and response to arbuscular mycorrhizal inoculation[J].Agronomie,1996,16(10):639-645. |
20 | BLAL B.Utilization of commercial arbuscular mycorrhizal fungal inoculants in ornamental and woody plants production in nursery[J].Acta Horticulturae,1999,496:461-470. |
21 | 王进.丛枝菌根真菌对核桃幼苗接种效应研究[D].荆州:长江大学,2016. |
WANG J.Study on the efficiency of inoculation with arbuscular mycorrhizal fungi to walnut seedling[D].Jingzhou:Yangtze University,2016. | |
22 | PONDER F.Growth and mycorrhizal development of potted white ash and black walnut fertilized by two methods[J].Canadian Journal of Botany,1984,62(3):509-512. |
23 | HUANG G M, ZOU Y N, WU Q S,et al.Mycorrhizal roles in plant growth,gas exchange,root morphology,and nutrient uptake of walnuts[J].Plant,Soil and Environment,2020,66(6):295-302. |
24 | MORTIER E, JACQUIOD S, JOUVE L,et al.Micropropagated walnut dependency on phosphate fertilization and arbuscular mycorrhiza for growth,nutrition and quality differ between rootstocks both after acclimatization and post-acclimatization[J].Scientia Horticulturae,2023,318:112081. |
25 | CHENG W J, XU Y J, HUANG G M,et al.Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut[J].Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2020,48(4):2021-2031. |
26 | BEHROOZ A, VAHDATI K, REJALI F,et al.Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut[J].HortScience,2019, 54(6):1087-1092. |
27 | ZOU Y N, XU Y J, LIU R C,et al.Two different strategies of Diversispora spurca-inoculated walnut seedlings to improve leaf P acquisition at low and moderate P levels[J].Frontiers in Plant Science,2023,14:1140467. |
28 | 曹明奡,张菲,黄光明,等.丛枝菌根真菌对低磷胁迫下核桃幼苗根系磷吸收的影响及机制[J].林业科学,2023,59(12):117-124. |
CAO M A, ZHANG F, HUANG G M,et al.Effects of arbuscular mycorrhizal fungi on phosphorus uptake of walnut seedling roots under low phosphorus stress and the potential mechanisms[J].Scientia Silvae Sinicae,2023,59(12):117-124. | |
29 | XU Y J, LIU F, LI X Y,et al.The mycorrhiza-induced maize ZmPt9 gene affects root development and phosphate availability in nonmycorrhizal plant[J].Plant Signaling and Behavior,2018,13(12):e1542240. |
30 | MORTIER E, MOUNIER A, KREPLAK J,et al.Evidence that a common arbuscular mycorrhizal network alleviates phosphate shortage in interconnected walnut sapling and maize plants[J].Frontiers in Plant Science,2023,14:1206047. |
31 | WEN Y, ZHOU L J, XU Y J,et al.Growth performance and osmolyte regulation of drought-stressed walnut plants are improved by mycorrhiza[J].Agriculture,2024,14(3):367. |
32 | MA W Y, QIN Q Y, ZOU Y N,et al.Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression[J].Frontiers in Plant Science,2022,13:1089420. |
33 | ZOU Y N, QIN Q Y, MA W Y,et al.Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought[J].BMC Plant Biology,2023,23:118. |
34 | WANG N, SHU X C, ZHANG F J,et al.Characterization of the heat shock transcription factor family in Lycoris radiata and its potential roles in response to abiotic stresses[J].Plants,2024,13(2):271. |
35 | MOHANTA T K, BASHIR T, HASHEM A,et al.Early events in plant abiotic stress signaling:interplay between calcium,reactive oxygen species and phytohormones[J].Journal of Plant Growth Regulation,2018,37:1033-1049. |
36 | LIU B H, JING D W, LIU F C,et al. Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and antioxidant defense system[J].Applied Microbiology and Biotechnology,2021,105:8951-8968. |
37 | 高娅,梁玉,董智,等.盐胁迫下印度梨形孢对核桃幼苗生长的影响[J].干旱区资源与环境,2019,33(8):194-198. |
GAO Y, LIANG Y, DONG Z,et al.Effects of Piriformospora indica on the growth of walnut seedlings under salt stress[J].Journal of Arid Land Resources and Environment,2019,33(8):194-198. | |
38 | THIOYE B, CASTEL L, HIRISSOU F,et al.Behavior of mycorrhizal communities in agroforestry:case of the walnut plantations associated with maize and faba bean[EB/OL](2020-05-06)[2024-06-10].. |
39 | TANG Y T, LI Y, CHU P,et al.Molecular biological mechanism of action in cancer therapies:juglone and its derivatives,the future of development[J].Biomedicine & Pharmacotherapy,2022,148:112785. |
40 | XU Y, CHEN X, DING L,et al.Allelopathy and allelochemicals in grasslands and forests[J].Forests,2023, 14(3):562. |
41 | 何万霞.间作野豌豆和菌根定殖对核桃生长及根系和土壤代谢物的调控作用[D].荆州:长江大学,2024. |
HE W X.Regulatory effects of intercropping Vicia villosa and mycorrhizal colonization on growth,soil characteristics,and metabolites of walnut plants[D].Jingzhou:Yangtze University,2024. | |
42 | DURNEY C, BOUSSAGEON R, EL-MJIYAD N,et al.Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees[J].Mycorrhiza,34:341-350. |
43 | KARST J, JONES M D, HOEKSEMA J D.Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests[J].Nature Ecology & Evolution,2023,7(4),501-511. |
44 | 田洪敏,罗美玲,杨雪梅,等.茶树-核桃树间作模式 对茶园土壤养分的影响[J].热带作物学报,2019, 40(4):657-663. |
TIAN H M, LUO M L, YANG X M,et al.The impact on soil nutrient of the tea-walnut intercropping[J].Chinese Journal of Tropical Crops,2019,40(4):657-663. | |
45 | ACHATZ M, MORRIS E K, MÜLLER F,et al.Soil hypha-mediated movement of allelochemicals:arbuscular mycorrhizae extend the bioactive zone of juglone[J].Functional Ecology,2014,28(4):1020-1029. |
46 | KOSTENKO V, PECHKO V, IVANOVA O.Impact of mycorrhizal fungi on walnuts and grapes resistance to pathogens in Ukrainian orchards:a review[J].Ukrainian Journal of Ecology,2018,8(1):533-541. |
47 | MALEITA C, ESTEVES I, BRAGA M E M,et al.Juglone and 1,4-naphthoquinone-promising nematicides for sustainable control of the root knot nematode Meloidogyne luci [J].Frontiers in Plant Science,2022,13:867803. |
[1] | 严文辉, 段世龙, 张林. AM真菌与菌丝际细菌协同活化土壤有机磷的机制与调控[J]. 植物研究, 2025, 45(3): 345-351. |
[2] | 李忠风, 朱志勇, 袁志林. 深色有隔内生菌——菌根真菌重要伙伴及基因组适应性特征[J]. 植物研究, 2025, 45(3): 352-360. |
[3] | 汪伯晏, 陈金, 程齐修, 包月明, 王海宁, 秦锐, 李晓玉. 丛枝菌根真菌培养与应用研究进展[J]. 植物研究, 2025, 45(3): 361-370. |
[4] | 刘熹, 黄弘远, 易盛昌, 余雅迪, 王皓, 倪小康, 胡玉丽, 张令. 入侵植物与菌根真菌互作及其对土壤氮循环的影响研究进展[J]. 植物研究, 2025, 45(3): 371-385. |
[5] | 刘武, 阳雅荧, 龚宁, 邹紫薇, 王艺, 陈保冬, 王琼, 刘玮. 古朴树实生苗生长和生理对土著丛枝菌根真菌接种的响应[J]. 植物研究, 2025, 45(3): 393-405. |
[6] | 春建惠, 董文龙, 屠元超, 刘芳, 徐云剑. 玉米GLP家族基因鉴定及其响应丛枝菌根共生表达[J]. 植物研究, 2025, 45(3): 406-418. |
[7] | 罗双, 王邵军, 兰梦杰, 李瑞, 夏佳慧, 杨胜秋, 郭晓飞. 丛枝菌根真菌与白枪杆共生对喀斯特石漠化土壤碳组分含量时空动态的影响[J]. 植物研究, 2025, 45(3): 419-432. |
[8] | 王亚鑫, 朱媛, 孟森, 明安刚, 贾宏炎, 覃方锉, 陆俊锟. 不同菌根类型树种与桉树混交对土壤微生物群落的影响[J]. 植物研究, 2025, 45(3): 447-459. |
[9] | 李赵毅, 郝龙飞, 刘婷岩, 何炎红, 张友, 白淑兰, 杨昕瑜. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响[J]. 植物研究, 2022, 42(5): 886-895. |
[10] | 马凯恒, 何佳凝, 谢牧洪, 任斌, 黄倩雪, 杨桂燕. 核桃JrNPR1基因的克隆与抗病响应潜力[J]. 植物研究, 2022, 42(1): 39-46. |
[11] | 刘婷岩, 郝龙飞, 王续富, 闫海霞, 白淑兰. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响[J]. 植物研究, 2021, 41(1): 145-151. |
[12] | 赵敏, 郝文颖, 宁心哲, 郝龙飞, 闫海霞, 牟亚男, 白淑兰. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1): 133-140. |
[13] | 王晔, 李航, 汤宇, 单梦乐, 张飞燕, 孙立夫, 张艳华. 浙江镜湖湿地3种菌根植物根部真菌群落多样性及对金属元素富集能力的研究[J]. 植物研究, 2019, 39(6): 883-889. |
[14] | 及利, 韩姣, 王芳, 王君, 宋笛, 张丽杰, 祁永会, 杨雨春. 干旱胁迫对不同土壤基质下核桃楸幼苗的生理特性的影响[J]. 植物研究, 2019, 39(5): 722-732. |
[15] | 粟莉圆, 李孝哲, 陈淑雯, 张芳芳, 赵婷婷, 杨桂燕. 核桃JrGRAS2基因响应热胁迫的表达及功能分析[J]. 植物研究, 2018, 38(1): 125-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||