植物研究 ›› 2025, Vol. 45 ›› Issue (3): 406-418.doi: 10.7525/j.issn.1673-5102.2025.03.011
春建惠1, 董文龙1, 屠元超1, 刘芳1(), 徐云剑2(
)
收稿日期:
2024-12-02
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
刘芳,徐云剑
E-mail:liufang0019@ynu.edu.cn;xuyunjian1992@ynu.edu.cn
作者简介:
春建惠(1998—),女,学士,主要从事植物-微生物互作研究。
基金资助:
Jianhui CHUN1, Wenlong DONG1, Yuanchao TU1, Fang LIU1(), Yunjian XU2(
)
Received:
2024-12-02
Online:
2025-05-20
Published:
2025-05-23
Contact:
Fang LIU, Yunjian XU
E-mail:liufang0019@ynu.edu.cn;xuyunjian1992@ynu.edu.cn
摘要:
类萌发素蛋白(germin-like proteins,GLPs)是一类高度保守的胁迫响应蛋白,可特异性响应菌根共生。该研究基于玉米(Zea mays)B73全基因组信息,利用生物信息学方法对ZmGLP基因家族成员进行鉴定及特征分析,利用转录组数据分析ZmGLP基因在丛枝菌根真菌(AMF)共生下的表达模式。该研究鉴定了45个ZmGLP基因,它们分布于9条染色体上,存在25个串联复制基因;系统发育树将ZmGLP基因分为5个亚家族;不同ZmGLP基因组织表达模式存在较大差异。启动子顺式作用元件分析显示,ZmGLP基因启动子包含响应光、胁迫和生长发育相关的元件,ZmGLP4-8启动子含有菌根响应元件MYCS,20个ZmGLP基因启动子包含潜在的菌根响应元件GCCGGC;基于接种AMF后不同时间的玉米根部转录组数据,发现12个ZmGLP基因的表达在接种AMF后出现了显著变化;其中ZmGLP3-3、ZmGLP4-8、ZmGLP4-16、ZmGLP4-20、ZmGLP5-1、ZmGLP6-1在共生后期显著上调表达,且与已报道的共生相关GLP基因在不同的进化分支,暗示这些基因可能参与菌根共生后期相关的功能。ZmGLP3-3功能研究显示,相较于野生型玉米植株,突变体zmglp3-3菌根定殖率显著降低。综上,该研究为共生相关ZmGLP基因挖掘提供了理论基础。
中图分类号:
春建惠, 董文龙, 屠元超, 刘芳, 徐云剑. 玉米GLP家族基因鉴定及其响应丛枝菌根共生表达[J]. 植物研究, 2025, 45(3): 406-418.
Jianhui CHUN, Wenlong DONG, Yuanchao TU, Fang LIU, Yunjian XU. Identification of the Maize GLP Family Genes and Their Expression in Response to Arbuscular Mycorrhizal Symbiosis[J]. Bulletin of Botanical Research, 2025, 45(3): 406-418.
表1
ZmGLP 基因家族成员信息
基因名称 Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids/aa | 相对分子量 Relative molecular weight/kDa | 蛋白等电点 Theoretical pI | 不稳定指数 Instability index(Ⅱ) | 脂肪族 氨基酸指数 Aliphatic index | 平均疏水性 Average of hydropathicity | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
ZmGLP1-1 | Zm00001eb005890 | 230 | 23.96 | 6.04 | 35.85 | 90.87 | 0.20 | 细胞壁 |
ZmGLP1-2 | Zm00001eb040290 | 114 | 12.52 | 6.26 | 29.95 | 90.70 | 0.08 | 细胞壁 |
ZmGLP1-3 | Zm00001eb040300 | 232 | 24.55 | 7.01 | 33.53 | 96.68 | 0.18 | 细胞壁 |
ZmGLP1-4 | Zm00001eb053700 | 225 | 23.79 | 5.89 | 13.41 | 90.89 | 0.08 | 细胞壁 |
ZmGLP1-5 | Zm00001eb061410 | 228 | 23.72 | 6.04 | 18.95 | 82.98 | 0.14 | 细胞壁 |
ZmGLP2-1 | Zm00001eb070560 | 263 | 26.90 | 7.80 | 27.42 | 90.84 | 0.28 | 细胞壁 |
ZmGLP2-2 | Zm00001eb088410 | 226 | 24.60 | 6.40 | 32.27 | 94.51 | 0.05 | 细胞壁 |
ZmGLP2-3 | Zm00001eb095950 | 208 | 21.65 | 5.34 | 27.25 | 86.44 | 0.32 | 细胞壁 |
ZmGLP3-1 | Zm00001eb129440 | 218 | 22.82 | 6.57 | 32.98 | 85.55 | 0.20 | 细胞壁 |
ZmGLP3-2 | Zm00001eb140880 | 208 | 21.34 | 5.59 | 49.81 | 90.58 | 0.13 | 细胞壁 |
ZmGLP3-3 | Zm00001eb155450 | 220 | 22.95 | 5.88 | 32.98 | 86.95 | 0.33 | 细胞壁 |
ZmGLP4-1 | Zm00001eb171490 | 157 | 16.92 | 6.25 | 19.75 | 96.24 | 0.09 | 细胞壁 |
ZmGLP4-2 | Zm00001eb171500 | 228 | 24.81 | 7.77 | 24.61 | 94.12 | 0.03 | 细胞壁 |
ZmGLP4-3 | Zm00001eb171510 | 228 | 24.80 | 7.77 | 26.54 | 92.81 | 0.02 | 细胞壁 |
ZmGLP4-4 | Zm00001eb171520 | 228 | 24.64 | 6.50 | 25.51 | 92.41 | 0.03 | 细胞壁 |
ZmGLP4-5 | Zm00001eb171530 | 229 | 24.77 | 6.28 | 26.18 | 94.59 | 0.05 | 细胞壁 |
ZmGLP4-6 | Zm00001eb171540 | 229 | 24.79 | 6.28 | 24.75 | 92.88 | 0.02 | 细胞壁 |
ZmGLP4-7 | Zm00001eb171550 | 228 | 24.64 | 6.89 | 26.12 | 95.00 | 0.08 | 细胞壁 |
ZmGLP4-8 | Zm00001eb171560 | 127 | 13.89 | 6.96 | 30.13 | 86.06 | -0.13 | 细胞壁 |
ZmGLP4-9 | Zm00001eb171570 | 228 | 24.61 | 6.50 | 26.55 | 93.29 | 0.05 | 细胞壁 |
ZmGLP4-10 | Zm00001eb171580 | 229 | 24.78 | 6.57 | 23.89 | 94.15 | 0.06 | 细胞壁 |
ZmGLP4-11 | Zm00001eb171590 | 209 | 22.78 | 9.21 | 25.83 | 93.78 | -0.06 | 细胞壁 |
ZmGLP4-12 | Zm00001eb171600 | 228 | 24.55 | 6.27 | 25.00 | 94.12 | 0.05 | 细胞壁 |
ZmGLP4-13 | Zm00001eb171610 | 228 | 24.57 | 6.57 | 24.79 | 94.12 | 0.05 | 细胞壁 |
ZmGLP4-14 | Zm00001eb171620 | 193 | 20.94 | 6.30 | 31.98 | 100.98 | -0.04 | 细胞壁 |
ZmGLP4-15 | Zm00001eb171630 | 229 | 24.79 | 6.57 | 26.11 | 92.88 | 0.04 | 细胞壁 |
ZmGLP4-16 | Zm00001eb171640 | 228 | 24.72 | 6.96 | 26.92 | 93.29 | 0.03 | 细胞壁 |
ZmGLP4-17 | Zm00001eb171650 | 228 | 24.52 | 6.50 | 24.21 | 94.56 | 0.07 | 细胞壁 |
ZmGLP4-18 | Zm00001eb171660 | 222 | 23.82 | 6.89 | 24.34 | 96.26 | 0.12 | 细胞壁 |
ZmGLP4-19 | Zm00001eb197900 | 257 | 28.02 | 5.83 | 39.10 | 85.37 | 0.24 | 细胞壁 |
ZmGLP4-20 | Zm00001eb202970 | 218 | 23.25 | 6.88 | 20.79 | 91.74 | 0.27 | 细胞壁 |
ZmGLP5-1 | Zm00001eb232890 | 224 | 23.09 | 7.74 | 25.23 | 94.20 | 0.31 | 细胞壁 |
ZmGLP5-2 | Zm00001eb242750 | 234 | 24.58 | 6.52 | 32.21 | 83.08 | 0.06 | 细胞壁 |
ZmGLP6-1 | Zm00001eb282040 | 212 | 21.89 | 6.01 | 23.72 | 102.12 | 0.53 | 细胞壁 |
ZmGLP6-2 | Zm00001eb287560 | 227 | 23.25 | 5.11 | 28.34 | 100.22 | 0.49 | 细胞壁 |
ZmGLP6-3 | Zm00001eb294140 | 215 | 22.44 | 5.89 | 24.18 | 104.33 | 0.44 | 细胞壁 |
ZmGLP7-1 | Zm00001eb301380 | 231 | 23.57 | 8.58 | 33.12 | 97.66 | 0.33 | 细胞壁 |
ZmGLP8-1 | Zm00001eb332460 | 214 | 22.36 | 6.57 | 30.74 | 86.68 | 0.18 | 细胞壁 |
ZmGLP8-2 | Zm00001eb362850 | 226 | 23.38 | 6.89 | 42.54 | 93.76 | 0.22 | 细胞壁 |
ZmGLP10-1 | Zm00001eb413180 | 226 | 24.63 | 6.18 | 20.73 | 93.19 | -0.05 | 细胞壁 |
ZmGLP10-2 | Zm00001eb413190 | 226 | 24.69 | 6.18 | 27.33 | 92.74 | 0 | 细胞壁 |
ZmGLP10-3 | Zm00001eb413210 | 227 | 24.70 | 6.04 | 25.19 | 94.49 | 0 | 细胞壁 |
ZmGLP10-4 | Zm00001eb413250 | 225 | 24.30 | 6.03 | 25.04 | 94.09 | 0.15 | 细胞壁 |
ZmGLP10-5 | Zm00001eb413260 | 225 | 24.25 | 6.28 | 29.02 | 94.09 | 0.16 | 细胞壁 |
ZmGLP10-6 | Zm00001eb419900 | 227 | 24.68 | 6.90 | 31.57 | 94.49 | 0.07 | 细胞壁 |
1 | SMITH S E, SMITH F A.Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales[J].Annual Review of Plant Biology,2011,62(1):227-250. |
2 | LIU C Y, GUO X N, DAI F J,et al.Mycorrhizal symbiosis enhances P uptake and indole-3-acetic acid accumulation to improve root morphology in different citrus genotypes[J].Horticulturae,2024,10(4):339. |
3 | FU W, CHEN B D, RILLIG M C,et al.Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland[J].New Phytologist,2022,234(6):2003-2017. |
4 | 黄静娴.植物-丛枝菌根真菌共生的研究进展[J].世界生态学,2024,13(2):255-261. |
HUANG J X.Research progress on plant-arbuscular mycorrhizal fungi symbiosis[J].International Journal of Ecology,2024,13(2):255-261. | |
5 | SHI J C, WANG X L, WANG E T.Mycorrhizal symbiosis in plant growth and stress adaptation:from genes to ecosystems[J].Annual Review of Plant Biology,2023,74(1):569-607. |
6 | DUAN S L, FENG G, LIMPENS E,et al.Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum[J].Nature Reviews Microbiology,2024,22(12):773-790. |
7 | DUNWELL J M, PURVIS A, KHURI S.Cupins:the most functionally diverse protein superfamily?[J].Phytochemistry,2004,65(1):7-17. |
8 | DUNWELL J M, GIBBINGS J G, MAHMOOD T,et al.Germin and germin-like proteins:evolution,structure,and function[J].Critical Reviews in Plant Sciences,2008,27(5):342-375. |
9 | AGARWAL G, RAJAVEL M, GOPAL B,et al.Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold[J].PLoS One,2009, 4(5):e5736. |
10 | BARMAN A R, BANERJEE J.Versatility of germin-like proteins in their sequences,expressions,and functions[J].Functional & Integrative Genomics,2015,15(5):533-548. |
11 | GOVINDAN G, SANDHIYA K R, ALPHONSE V,et al.Role of germin-like proteins(GLPs) in biotic and abiotic stress responses in major crops:a review on plant defense mechanisms and stress tolerance[J].Plant Molecular Biology Reporter,2024,42(3):450-468. |
12 | PEI Y K, LI X C, ZHU Y T,et al.GhABP19,a novel germin-like protein from Gossypium hirsutum,plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens[J].Frontiers in Plant Science,2019,10:583. |
13 | MAO L X, GE L J, YE X C,et al.ZmGLP1,a germin-like protein from maize,plays an important role in the regulation of pathogen resistance[J].International Journal of Molecular Sciences,2022,23(22):14316. |
14 | YUAN B J, YANG Y L, FAN P,et al.Genome-wide identification and characterization of germin and germin-like proteins(GLPs) and their response under powdery mildew stress in wheat (Triticum aestivum L.)[J].Plant Molecular Biology Reporter,2021,39(4):821-832. |
15 | ZHANG Y H, WANG X S, CHANG X C,et al.Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco[J].Biochemical and Biophysical Research Communications,2018,497(1):160-166. |
16 | GUCCIARDO S, WISNIEWSKI J P, BREWIN N J,et al.A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor[J].Journal of Experimental Botany,2007,58(5):1161-1171. |
17 | DOLL J, HAUSE B, DEMCHENKO K,et al.A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene[J].Plant and Cell Physiology,2003,44(11):1208-1214. |
18 | ZENG X B, LI D Z, LV Y F,et al.A germin-like protein GLP1 of legumes mediates symbiotic nodulation by interacting with an outer membrane protein of rhizobia[J].Microbiology Spectrum,2023,11(1):e0335022. |
19 | PAWLOWSKI M L, VUONG T D, VALLIYODAN B,et al.Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean[J].Theoretical and Applied Genetics,2020,133:409-417. |
20 | ZORIN E A, SULIMA A S, ZHERNAKOV A I,et al.Genomic and transcriptomic analysis of pea(Pisum sativum L.) breeding line ‘Triumph’ with high symbiotic responsivity[J].Plants,2024,13(1):78. |
21 | HE H X.Study on the current situation and influencing factors of corn import trade in China:based on the trade gravity model[J].Journal of Intelligent Systems,2024, 33(1):20240040. |
22 | HUI J, AN X, LI Z B,et al.The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots[J].The Plant Cell,2022,34(10):4066-4087. |
23 | ILYAS M,ALI I, NASSER BINJAWHAR D,et al.Molecular characterization of germin-like protein genes in Zea mays (ZmGLPs) using various in silico approaches[J].ACS Omega,2023,8(18):16327-16344. |
24 | LI L, XU X H, CHEN C,et al.Genome-wide characterization and expression analysis of the germin-like protein family in rice and Arabidopsis [J].International Journal of Molecular Sciences,2016,17(10):1622. |
25 | CHEN C J, WU Y, LI J W,et al.TBtools-II:a “one for all,all for one” bioinformatics platform for biological big-data mining[J].Molecular Plant,2023,16(11):1733-1742. |
26 | BILESCHI M L, BELANGER D, BRYANT D H,et al.Using deep learning to annotate the protein universe[J].Nature Biotechnology,2022,40:932-937. |
27 | LU S N, WANG J Y, CHITSAZ F,et al.CDD/SPARCLE:the conserved domain database in 2020[J].Nucleic Acids Research,2020,48(D1):265-268. |
28 | CHOU K C, SHEN H B.Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J].PLoS One,2010,5(6):e11335. |
29 | SAHA D, RANA R S, ARYA L,et al.Genomic organization and structural diversity of germin-like protein coding genes in foxtail millet (Setaria italica L.)[J].Agri Gene,2017,3:87-98. |
30 | LETUNIC I, BORK P.Interactive Tree of Life(iTOL) v6:recent updates to the phylogenetic tree display and annotation tool[J].Nucleic Acids Research,2024,52(W1):78-82. |
31 | WANG Y P, TANG H B, WANG X Y,et al.Detection of colinear blocks and synteny and evolutionary analyses based on utilization of MCScanX[J].Nature Protocols,2024,19(7):2206-2229. |
32 | WANG Y Z, JIA L H, TIAN G,et al.shinyCircos-V2.0:leveraging the creation of circos plot with enhanced usability and advanced features[J].iMeta,2023,2(2):e109. |
33 | LESCOT M, DÉHAIS P, THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327. |
34 | WANG X B, ZHANG H W, GAO Y L,et al.A comprehensive analysis of the Cupin gene family in soybean (Glycine max)[J].PLoS One,2014,9(10):e110092. |
35 | DRUKA A, KUDRNA D, KANNANGARA C G,et al.Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAs[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(2):850-855. |
36 | ZHANG Z D, WEN Y S, YUAN L Q,et al.Genome-wide identification,characterization,and expression analysis related to low-temperature stress of the CmGLP gene family in Cucumis melo L.[J].International Journal of Molecular Sciences,2022,23(15):8190. |
37 | SANG Y M, LIU Q F, LEE J,et al.Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity[J].Scientific Reports,2016,6(1):29072. |
38 | ILYAS M, RASHEED A, MAHMOOD T.Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches[J].Biotechnology Letters,2016,38(9):1405-1421. |
39 | CHEN A Q, GU M, SUN S B,et al.Identification of two conserved cis-acting elements,MYCS and P1BS,involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species[J].New Phytologist,2011,189(4):1157-1169. |
[1] | 汪伯晏, 陈金, 程齐修, 包月明, 王海宁, 秦锐, 李晓玉. 丛枝菌根真菌培养与应用研究进展[J]. 植物研究, 2025, 45(3): 361-370. |
[2] | 刘武, 阳雅荧, 龚宁, 邹紫薇, 王艺, 陈保冬, 王琼, 刘玮. 古朴树实生苗生长和生理对土著丛枝菌根真菌接种的响应[J]. 植物研究, 2025, 45(3): 393-405. |
[3] | 罗双, 王邵军, 兰梦杰, 李瑞, 夏佳慧, 杨胜秋, 郭晓飞. 丛枝菌根真菌与白枪杆共生对喀斯特石漠化土壤碳组分含量时空动态的影响[J]. 植物研究, 2025, 45(3): 419-432. |
[4] | 荀宝茹, 秦洪涛, 马蕊, 郭楠枫, 刘运平, 吴莹, 蓝兴国. 羽衣甘蓝类受体激酶FERONIA基因克隆、表达及与相互作用蛋白分析[J]. 植物研究, 2024, 44(2): 298-306. |
[5] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
[6] | 陈华峰, 代龙军, 刘明洋, 郭冰冰, 杨洪, 王立丰. 橡胶树胶乳高表达热激蛋白HbHSP90.4基因抗逆功能分析[J]. 植物研究, 2022, 42(6): 1023-1032. |
[7] | 刘明洋, 肖化兴, 王立丰, 梁晓宇, 张宇, 王萌. 橡胶树热激蛋白HbHSP90.8-1基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 811-820. |
[8] | 王宏鹏, 李一丹, 汪耀, 谭晓宇, 陈成彬, 张力鹏. 菊叶薯蓣DcPMK基因克隆及互作蛋白筛选[J]. 植物研究, 2022, 42(5): 855-865. |
[9] | 李赵毅, 郝龙飞, 刘婷岩, 何炎红, 张友, 白淑兰, 杨昕瑜. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响[J]. 植物研究, 2022, 42(5): 886-895. |
[10] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[11] | 马霜, 王博雅, 曹颖, 胡尚连, 高志民. 毛竹扩展蛋白基因的鉴定及其表达分析[J]. 植物研究, 2022, 42(1): 29-38. |
[12] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[13] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2): 294-301. |
[14] | 王肖肖, 覃碧, 杨玉双, 聂秋海, 张继川, 刘实忠. 橡胶草E2泛素结合酶基因TkUBC2基因的克隆及其表达分析[J]. 植物研究, 2021, 41(1): 98-106. |
[15] | 王万奇, 齐婉竹, 赵秋爽, 曾栋, 刘轶, 付鹏跃, 曲冠证, 赵曦阳. 白桦BpJMJ18基因启动子克隆及表达分析[J]. 植物研究, 2020, 40(5): 751-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||