植物研究 ›› 2025, Vol. 45 ›› Issue (3): 345-351.doi: 10.7525/j.issn.1673-5102.2025.03.005
收稿日期:
2025-03-12
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
张林
E-mail:linzhang@cau.edu.cn
作者简介:
严文辉(1997—),男,博士研究生,主要从事植物-微生物互作研究。
基金资助:
Wenhui YAN1, Shilong DUAN1,2, Lin ZHANG1()
Received:
2025-03-12
Online:
2025-05-20
Published:
2025-05-23
Contact:
Lin ZHANG
E-mail:linzhang@cau.edu.cn
摘要:
丛枝菌根(AM)真菌与菌丝际细菌互作在植物从土壤中活化及吸收磷的过程中发挥着关键作用。该文系统阐述了AM真菌-细菌互作对土壤磷循环的影响及其调控机制。AM真菌菌丝分泌物中的糖类、羧酸盐和氨基酸等物质为细菌提供碳源并特异性招募解磷细菌,菌丝还能作为“移动桥梁”促进细菌迁移。在群落水平上,AM真菌能够调控菌丝际细菌的结构和功能,富集含有磷酸酶基因(如phoD)的功能细菌,提高磷酸酶活性,促进有机磷矿化。基于上述机制,通过调控土壤碳磷摩尔比、添加菌丝分泌物成分等策略可以发挥AM真菌-细菌互作的生物学潜力,提高土壤磷利用效率。
中图分类号:
严文辉, 段世龙, 张林. AM真菌与菌丝际细菌协同活化土壤有机磷的机制与调控[J]. 植物研究, 2025, 45(3): 345-351.
Wenhui YAN, Shilong DUAN, Lin ZHANG. Mechanisms and Regulation of Interactions between AM Fungi and Hyphosphere Bacteria in Organic Phosphorus Mineralization[J]. Bulletin of Botanical Research, 2025, 45(3): 345-351.
1 | SHI J C, WANG X L, WANG E T.Mycorrhizal symbiosis in plant growth and stress adaptation:from genes to ecosystems[J].Annual Review of Plant Biology,2023,74(1):569-607. |
2 | VAN DER HEIJDEN M G A, MARTIN F M, SELOSSE M A,et al.Mycorrhizal ecology and evolution:the past,the present,and the future[J].New Phytologist,2015,205(4):1406-1423. |
3 | FEDDERMANN N, FINLAY R, BOLLER T,et al.Functional diversity in arbuscular mycorrhiza:the role of gene expression,phosphorous nutrition and symbiotic efficiency[J].Fungal Ecology,2010,3(1):1-8. |
4 | YANG S Y, GRØNLUND M, JAKOBSEN I,et al.Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J].The Plant Cell,2012,24(10):4236-4251. |
5 | SMITH S E, SMITH F A, JAKOBSEN I.Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J].Plant Physiology,2003,133(1):16-20. |
6 | JIANG Y N, WANG W X, XIE Q J,et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J].Science,2017,356(6343):1172-1175. |
7 | LUGINBUEHL L H, MENARD G N, KURUP S,et al.Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant[J].Science,2017,356(6343):1175-1178. |
8 | PARNISKE M.Arbuscular mycorrhiza:the mother of plant root endosymbioses[J].Nature Reviews Microbiology,2008,6(10):763-775. |
9 | CHOI J, SUMMERS W, PASZKOWSKI U.Mechanisms underlying establishment of arbuscular mycorrhizal symbioses[J].Annual Review of Phytopathology,2018,56(1):135-160. |
10 | HIJIKATA N, MURASE M, TANI C,et al.Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus[J].New Phytologist,2010,186(2):285-289. |
11 | 马进川.我国农田磷素平衡的时空变化与高效利用途径[D].北京:中国农业科学院,2018. |
MA J C.Temporal and spatial variation of phosphorus balance and solutions to improve phosphorus use efficiency in Chinese arable land[D].Beijing:Chinese Academy of Agricultural Sciences,2018. | |
12 | YAO Q, LI X L, FENG G,et al.Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus[J].Plant and Soil,2001,230(2):279-285. |
13 | ANDRINO A, GUGGENBERGER G, SAUHEITL L,et al.Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza[J].Biology and Fertility of Soils,2021,57(1):47-64. |
14 | 张万年,杨子,严玉鹏,等.土壤有机磷的矿化及其调控研究进展[J].土壤学报,2025,62(2):334-347. |
ZHANG W N, YANG Z, YAN Y P,et al.Research progress on soil organic phosphorus mineralization and its regulation[J].Acta Pedologica Sinica,2025,62(2):334-347. | |
15 | WENT F W, STARK N.The biological and mechanical role of soil fungi[J].Proceedings of the National Academy of Sciences of the United States of America,1968, 60(2):497-504. |
16 | HODGE A, CAMPBELL C D, FITTER A H.An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J].Nature,2001,413(6853):297-299. |
17 | LEIGH J, HODGE A, FITTER A H.Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J].New Phytologist,2009,181(1):199-207. |
18 | KOIDE R T, KABIR Z.Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate[J].New Phytologist,2000,148(3):511-517. |
19 | FENG G, SU Y B, LI X L,et al.Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil[J].Journal of Plant Nutrition,2002,25(5):969-980. |
20 | TISSERANT E, KOHLER A, DOZOLME-SEDDAS P,et al.The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont[J].New Phytologist,2012,193(3):755-769. |
21 | TISSERANT E, MALBREIL M, KUO A,et al.Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(50):20117-20122. |
22 | VENICE F, GHIGNONE S, DI FOSSALUNGA A S,et al.At the nexus of three kingdoms:the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant,endobacterial and fungal interactions[J].Environmental Microbiology,2020,22(1):122-141. |
23 | LEIGH J, FITTER A H, HODGE A.Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria[J].FEMS Microbiology Ecology,2011,76(3):428-438. |
24 | TOLJANDER J F, ARTURSSON V, PAUL L R,et al.Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species[J].FEMS Microbiology Letters,2006,254(1):34-40. |
25 | ARTURSSON V, FINLAY R D, JANSSON J K.Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J].Environmental Microbiology,2006,8(1):1-10. |
26 | ZHANG L, ZHOU J C, GEORGE T S,et al.Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J].Trends in Plant Science,2022,27(4):402-411. |
27 | DUAN S L, DECLERCK S, FENG G,et al.Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula [J].Environmental Microbiology,2023,25(4):867-879. |
28 | ORDOÑEZ Y M, FERNANDEZ B R, LARA L S,et al.Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities[J].PLoS One,2016,11(6):e0154438. |
29 | BUKOVSKÁ P, BONKOWSKI M, KONVALINKOVÁ T,et al.Utilization of organic nitrogen by arbuscular mycorrhizal fungi:is there a specific role for protists and ammonia oxidizers?[J].Mycorrhiza,2018,28(3):269-283. |
30 | ZHANG L, XU M G, LIU Y,et al.Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J].New Phytologist,2016,210(3):1022-1032. |
31 | SOKOL N W, SLESSAREV E, MARSCHMANN G L,et al.Life and death in the soil microbiome:how ecological processes influence biogeochemistry[J].Nature Reviews Microbiology,2022,20(7):415-430. |
32 | BABIKOVA Z, GILBERT L, BRUCE T J A,et al.Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack[J].Ecology Letters,2013,16(7):835-843. |
33 | ZHANG L, FAN J Q, FENG G,et al.The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2[J].Mycorrhiza,2018,29(1):69-75. |
34 | ZHANG L, PENG Y, ZHOU J C,et al.Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure[J].Soil Biology and Biochemistry,2020,142:107724. |
35 | JIN Z X, WANG G W, GEORGE T S,et al.Potential role of sugars in the hyphosphere of arbuscular mycorrhizal fungi to enhance organic phosphorus mobilization[J].Journal of Fungi,2024,10(3):226. |
36 | ZHANG L, FENG G, DECLERCK S.Signal beyond nutrient,fructose,exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J].The ISME Journal,2018,12(10):2339-2351. |
37 | ZHANG L, SHI N, FAN J Q,et al.Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions[J].Environmental Microbiology,2018,20(7):2639-2651. |
38 | WANG G W, JIN Z X, GEORGE T S,et al.Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J].New Phytologist,2023,238(6):2578-2593. |
39 | WANG L T, ZHANG L, GEORGE T S,et al.A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization[J].New Phytologist,2023,238(2):859-873. |
40 | WANG L T, GEORGE T S, FENG G.Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function[J].New Phytologist,2024,242(4):1529-1533. |
41 | JIN Z X, JIANG F Y, WANG L T,et al.Arbuscular mycorrhizal fungi and Streptomyces:brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction[J].Microbiome,2024,12(1):83. |
42 | FIERER N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590. |
43 | KOHLMEIER S, SMITS T H M, FORD R M,et al.Taking the fungal highway:mobilization of pollutant-degrading bacteria by fungi[J].Environmental Science & Technology,2005,39(12):4640-4646. |
44 | ALBERTSEN A, RAVNSKOV S, GREEN H,et al.Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter[J].Soil Biology and Biochemistry,2006,38(5):1008-1014. |
45 | ALLEN M F.Mycorrhizal fungi:highways for water and nutrients in arid soils[J].Vadose Zone Journal,2007, 6(2):291-297. |
46 | VIEIRA C K, MARASCALCHI M N, ROZMOŠ M,et al.Arbuscular mycorrhizal fungal highways:what,how and why?[J].Soil Biology and Biochemistry,2025,202:109702. |
47 | SHARMA S, COMPANT S, BALLHAUSEN M B,et al.The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum [J].Microbiological Research,2020,240:126556. |
48 | LI X, ZHAO R T, LI D D,et al.Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil[J].Microbiome,2023,11(1):45. |
49 | ZHOU J C, KUYPER T W, FENG G.A trade-off between space exploration and mobilization of organic phosphorus through associated microbiomes enables niche differentiation of arbuscular mycorrhizal fungi on the same root[J].Science China Life Sciences,2023,66(6):1426-1439. |
50 | ANCKAERT A, DECLERCK S, POUSSART L A,et al.The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus[J].Current Biology,2024,34(21):4934-4950. |
51 | HE J D, ZHANG L, VAN DINGENEN J,et al.Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes[J].The ISME Journal,2024,18(1):wrae185. |
52 | JIANG F Y, ZHANG L, ZHOU J C,et al.Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J].New Phytologist,2021,230(1):304-315. |
53 | TIAN B L, PEI Y C, HUANG W,et al.Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant[J].The ISME Journal,2021,15(7):1919-1930. |
54 | VOLPE V, CAROTENUTO G, BERZERO C,et al.Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula [J].Carbohydrate Polymers,2020,229:115505. |
55 | VOLPE V, CHIALVA M, MAZZARELLA T,et al.Long‐lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula [J].New Phytologist,2023,237(6):2316-2331. |
56 | 段世龙,严文辉,冯固,等.植物根系/菌根途径获取养分的碳磷互惠机制[J].植物营养与肥料学报,2023,29(6):1160-1167. |
DUAN S L, YAN W H, FENG G,et al.Carbon-phosphorus reciprocal mechanism for plants to acquire nutrients through the root/mycorrhizal pathway[J].Journal of Plant Nutrition and Fertilizers,2023,29(6):1160-1167. |
[1] | 罗双, 王邵军, 兰梦杰, 李瑞, 夏佳慧, 杨胜秋, 郭晓飞. 丛枝菌根真菌与白枪杆共生对喀斯特石漠化土壤碳组分含量时空动态的影响[J]. 植物研究, 2025, 45(3): 419-432. |
[2] | 春建惠, 董文龙, 屠元超, 刘芳, 徐云剑. 玉米GLP家族基因鉴定及其响应丛枝菌根共生表达[J]. 植物研究, 2025, 45(3): 406-418. |
[3] | 刘熹, 黄弘远, 易盛昌, 余雅迪, 王皓, 倪小康, 胡玉丽, 张令. 入侵植物与菌根真菌互作及其对土壤氮循环的影响研究进展[J]. 植物研究, 2025, 45(3): 371-385. |
[4] | 汪伯晏, 陈金, 程齐修, 包月明, 王海宁, 秦锐, 李晓玉. 丛枝菌根真菌培养与应用研究进展[J]. 植物研究, 2025, 45(3): 361-370. |
[5] | 李忠风, 朱志勇, 袁志林. 深色有隔内生菌——菌根真菌重要伙伴及基因组适应性特征[J]. 植物研究, 2025, 45(3): 352-360. |
[6] | 李赵毅, 郝龙飞, 刘婷岩, 何炎红, 张友, 白淑兰, 杨昕瑜. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响[J]. 植物研究, 2022, 42(5): 886-895. |
[7] | 刘婷岩, 郝龙飞, 王续富, 闫海霞, 白淑兰. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响[J]. 植物研究, 2021, 41(1): 145-151. |
[8] | 周志强1;胡燕妮1;彭英丽1;孙铭隆1;张玉红1;刘彤2*. 3种丛枝菌根真菌对不同种源黄檗幼苗的影响[J]. 植物研究, 2015, 35(1): 92-100. |
[9] | 李艳红;姜勇;王文杰;张宝友*. 有机碳和无机碳对3种真菌胞外酸性磷酸酶和蛋白酶活性的影响[J]. 植物研究, 2013, 33(4): 404-409. |
[10] | 徐 辉;张 捷*. 丛枝菌根真菌对植物生长影响的研究[J]. 植物研究, 2007, 27(5): 636-640. |
[11] | 于富强, 纪大干, 刘培贵. 云南松外生菌根真菌分离培养研究[J]. 植物研究, 2003, 23(1): 66-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||