植物研究 ›› 2025, Vol. 45 ›› Issue (3): 447-459.doi: 10.7525/j.issn.1673-5102.2025.03.014
• 研究论文 • 上一篇
王亚鑫1,2, 朱媛1, 孟森1, 明安刚3, 贾宏炎3, 覃方锉1(), 陆俊锟1
收稿日期:
2024-12-28
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
覃方锉
E-mail:qinfc@caf.ac.cn
作者简介:
王亚鑫(1999—),女,硕士研究生,主要从事林木微生物资源利用研究。
基金资助:
Yaxin WANG1,2, Yuan ZHU1, Sen MENG1, Angang MING3, Hongyan JIA3, Fangcuo QIN1(), Junkun LU1
Received:
2024-12-28
Online:
2025-05-20
Published:
2025-05-23
Contact:
Fangcuo QIN
E-mail:qinfc@caf.ac.cn
摘要:
桉树混交林在促进土壤养分循环、提高生产力和生态系统功能等方面有重要作用。菌根共生是影响混交林种间互作关系的重要因素。然而,不同菌根类型的混交树种对桉树人工林土壤微生物群落结构及功能的影响尚缺乏研究。该研究以桉树纯林及其与降香黄檀(Dalbergia odorifera,固氮-丛枝菌根树种)、火力楠(Michelia macclurei,丛枝菌根树种)、麻栎(Quercus acutissima,外生菌根树种)的混交林为研究对象,利用宏基因组测序技术,探究4种不同林型土壤微生物群落多样性、结构功能、细菌-真菌共现网络模式差异及其与土壤养分的关系。结果表明:混交林显著提高土壤微生物群落物种丰富度,改变微生物功能,增加微生物共现网络复杂性。降香黄檀与桉树混交林土壤微生物丰富度、细菌群落好氧化能异养和发酵功能基因相对丰度、真菌-细菌微生物共现网络模块度均最高;土壤细菌、真菌群落结构与其他3种林型差异显著。火力楠与桉树、麻栎与桉树混交林土壤细菌、真菌的碳氢化合物降解、氮固定、甲烷氧化功能基因相对丰度均高于桉树纯林。外生菌根树种(麻栎)与桉树混交林土壤微生物共现网络边数、平均度及网络稳定性最高,其核心微生物丰度与
中图分类号:
王亚鑫, 朱媛, 孟森, 明安刚, 贾宏炎, 覃方锉, 陆俊锟. 不同菌根类型树种与桉树混交对土壤微生物群落的影响[J]. 植物研究, 2025, 45(3): 447-459.
Yaxin WANG, Yuan ZHU, Sen MENG, Angang MING, Hongyan JIA, Fangcuo QIN, Junkun LU. The Effects of Mixed Eucalyptus Plantations with Different Mycorrhizal Tree Species on Soil Microbial Community[J]. Bulletin of Botanical Research, 2025, 45(3): 447-459.
表1
桉树纯林及其与3种不同菌根类型树种混交林土壤理化性质
林型 Plantation type | pH | 铵态氮 | 硝态氮 | 全氮 TN/(g∙kg-1) | 有机碳 SOC/(mg∙kg-1) | 全磷 TP/(g∙kg-1) | 全钾 TK/(g∙kg-1) | 有效磷 AP/(g∙kg-1) | 有效钾 AK/(g∙kg-1) |
---|---|---|---|---|---|---|---|---|---|
EU | 4.41±0.20ab | 2.78±1.20a | 12.20±2.34ab | 1.19±0.36a | 24.95±4.92a | 0.25±0.04a | 9.16±3.57a | 2.42±0.71a | 62.97±2.98b |
EU+DO | 4.37±0.17ab | 2.88±1.20a | 13.82±2.54a | 1.18±0.34a | 20.58±2.48b | 0.25±0.03ab | 9.39±2.97a | 2.22±0.51a | 60.67±3.08b |
EU+MM | 4.51±0.27a | 1.28±0.78b | 14.32±2.69a | 1.16±0.10a | 22.96±1.23ab | 0.22±0.03b | 8.34±1.42ab | 1.81±0.68ab | 71.82±4.49a |
EU+QA | 4.48±0.19ab | 2.16±0.19ab | 13.37±1.82ab | 0.98±0.14ab | 23.56±2.10a | 0.22±0.02ab | 7.95±1.28abc | 1.98±0.41ab | 52.10±1.82c |
表2
桉树纯林及其与3种不同菌根类型树种混交林土壤细菌、真菌共现网络拓扑属性
林型 Plantation type | 平均最短路径 Average shortest path length | 平均度 Average degree | 网络直径 Network diameter | 网络密度 Network density | 聚类系数 Clustering coefficient | 模块化 Modularity | 正相关关系 Positive correlation | 负相关关系 Negative correlation | 稳定性 Stability |
---|---|---|---|---|---|---|---|---|---|
EU | 4.705 | 8.534 | 13.367 | 0.028 | 0.595 | 0.577 | 1 247 | 80 | 0.545 |
EU+DO | 3.497 | 4.986 | 12.484 | 0.036 | 0.564 | 0.684 | 333 | 16 | 0.039 |
EU+MM | 3.505 | 17.383 | 14.883 | 0.093 | 0.714 | 0.311 | 1 317 | 317 | 0.133 |
EU+QA | 18.200 | 30.521 | 9.167 | 0.163 | 0.925 | 0.153 | 2 687 | 182 | 0.882 |
1 | 温远光,张祖峰,周晓果,等.珍贵乡土树种与桉树混交对生态系统生物量和碳储量的影响[J].广西科学,2020,27(2):111-119. |
WEN Y G, ZHANG Z F, ZHOU X G,et al.Effects of mixing precious indigenous tree species and Eucalyptus on ecosystem biomass and carbon stocks[J].Guangxi Sciences,2020,27(2):111-119. | |
2 | 温远光,刘世荣,陈放.连栽对桉树人工林下物种多样性的影响[J].应用生态学报,2005,16(9):1667-1671. |
WEN Y G, LIU S R, CHEN F.Effects of continuous cropping on understorey species diversity in Eucalypt plantations[J].Chinese Journal of Applied Ecology,2005,16(9):1667-1671. | |
3 | FENG Y H, SCHMID B, LOREAU M,et al.Multispecies forest plantations outyield monocultures across a broad range of conditions[J].Science,2022,376(6595):865-868. |
4 | BAUHUS J, VAN WINDEN A P, NICOTRA A B.Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus [J].Canadian Journal of Forest Research,2004,34(3):686-694. |
5 | ZHANG H, GUAN D S, SONG M W.Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta,South China[J].Forest Ecology and Management,2012,277:90-97. |
6 | FORRESTER D I, BAUHUS J, COWIE A L.Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii [J].Canadian Journal of Forest Research,2005,35(12):2942-2950. |
7 | SANTOS F M, CHAER G M, DINIZ A R,et al.Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil[J].Forest Ecology and Management,2017,384:110-121. |
8 | AKATSUK M, MAKITA N.Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations[J].Tree Physiology,2020,40(8):1071-1079. |
9 | PHILLIPS R P, BRZOSTEK E, MIDGLEY M G.The mycorrhizal-associated nutrient economy:a new framework for predicting carbon-nutrient couplings in temperate forests[J].New Phytologist,2013,199(1):41-51. |
10 | YAO X Y, ZANG Q C, ZHOU H J,et al.Introduction of Dalbergia odorifera enhances nitrogen absorption on Eucalyptus through stimulating microbially mediated soil nitrogen-cycling[J].Forest Ecosystems,2021,8:1-12. |
11 | 于福科,黄新会,王克勤,等.桉树人工林生态退化与恢复研究进展[J].中国生态农业学报(中英文),2009,17(2):393-398. |
YU F K, HUANG X H, WANG K Q,et al.An overview of ecological degradation and restoration of Eucalyptus plantation[J].Chinese Journal of Eco-Agriculture,2009,17(2):393-398. | |
12 | FORRESTER D I, BAUHUS J, KHANNA P K.Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii [J].Forest Ecology and Management,2004,193(1/2):81-95. |
13 | PEREIRA A P A, DURRER A, GUMIERE T,et al.Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers[J].Forest Ecology and Management,2019,433:332-342. |
14 | STEENWERTH K L, JACKSON L E, CALDERÓN F J,et al.Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California[J].Soil Biology and Biochemistry,2002, 34(11):1599-1611. |
15 | JANSSON J K, HOFMOCKEL K S.Soil microbiomes and climate change[J].Nature Reviews Microbiology,2020,18(1):35-46. |
16 | TIAN J, DUNGAIT J A J, LU X K,et al.Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil[J].Global Change Biology,2019,25(10):3267-3281. |
17 | 朱媛,王亚鑫,覃方锉,等.不同林龄桉树根际及非根际土壤微生物群落结构及功能[J].生态学报,2024,44(18):8409-8422. |
ZHU Y, WANG Y X, QIN F C,et al.Composition and function of soil microbial community in rhizosphere soil and bulk soil of Eucalyptus plantation across different stand ages[J].Acta Ecologica Sinica,2024,44(18):8409-8422. | |
18 | WAGG C, SCHLAEPPI K, BANERJEE S,et al.Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J].Nature Communications,2019,10(1):4841. |
19 | CHEN G, ZHU H L, ZHANG Y.Soil microbial activities and carbon and nitrogen fixation[J].Research in Microbiology,2003,154(6):393-398. |
20 | DENG M F, HU S J, GUO L L,et al.Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest[J].Science Advances,2023,9(3):eadd4468. |
21 | CHEEKE T E, PHILLIPS R P, BRZOSTEK E R,et al.Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function[J].New Phytologist,2017,214(1):432-442. |
22 | PEREIR A P A, ZAGATT M R G, BRANDANI C B,et al. Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations[J].Frontiers in Microbiology,2018,9:655. |
23 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. |
BAO S D.Soil agrochemical analysis[M].3rd ed.Beijing:China Agricultural Press,2000 | |
24 | YIN S Q, ZHANG W M, TONG T J,et al.Feedstock-dependent abundance of functional genes related to nitrogen transformation controlled nitrogen loss in composting[J].Bioresource Technology,2022,361:127678. |
25 | CHEN S F, ZHOU Y Q, CHEN Y R,et al.fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890. |
26 | LI D H, LIU C M, LUO R B,et al.MEGAHIT:an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J].Bioinformatics,2015,31(10):1674-1676. |
27 | ZHU W H, LOMSADZE A, BORODOVSKY M. Ab initio gene identification in metagenomic sequences[J].Nucleic Acids Research,2010,38(12):e132. |
28 | KANEHISA M, ARAKI M, GOTO S,et al.KEGG for linking genomes to life and the environment[J].Nucleic Acids Research,2008,36:D480-D484. |
29 | 邓泱泱,荔建琦,吴松锋,等.nr数据库分析及其本地化[J].计算机工程,2006,32(5):71-73. |
DENG Y Y, LI J Q, WU S F,et al.Integrated nr database in protein annotation system and its localization[J].Computer Engineering,2006,32(5):71-73. | |
30 | LIU J W, ZHU S Q, LIU X Y,et al.Spatiotemporal dynamics of the archaeal community in coastal sediments:assembly process and co-occurrence relationship[J].The ISME Journal,2020,14(6):1463-1478. |
31 | XIAO H C, SHENG H, ZHANG L N,et al.How does land-use change alter soil microbial diversity,composition,and network in subtropical China?[J].Catena,2023,231:107335. |
32 | HU W, ZHENG N N, ZHANG Y,et al.Metagenomics analysis reveals effects of salinity fluctuation on diversity and ecological functions of high and low nucleic acid content bacteria[J].Science of The Total Environment,2024,933:173186. |
33 | LI M, RAZA M, SONG S,et al.Application of culturomics in fungal isolation from mangrove sediments[J].Microbiome,2023,11(1):272. |
34 | GAO W, ZHAO J, GUO X B,et al.Intensive N2 fixation accelerates microbial turnover in cropland soils[J].Science of The Total Environment,2024,916:170081. |
35 | BENJAMINI Y, KRIEGER A M, YEKUTIELI D.Adaptive linear step-up procedures that control the false discovery rate[J].Biometrika,2006,93(3):491-507. |
36 | GUIMERÀ R, NUNES AMARAL L A.Functional cartography of complex metabolic networks[J].Nature,2005,433(7028):895-900. |
37 | DENG Y, JIANG Y H, YANG Y F,et al.Molecular ecological network analyses[J].BMC Bioinformatics,2012,13(1):113. |
38 | BANERJEE S, BAAH-ACHEAMFOUR M, Carlyle C N,et al.Determinants of bacterial communities in Canadian agroforestry systems[J].Environmental Microbiology,2016,18(6):1805-1816. |
39 | YUAN M M, GUO X, WU L W,et al.Climate warming enhances microbial network complexity and stability[J].Nature Climate Change,2021,11(4):343-348. |
40 | MONTAGNINI F.Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland[J].Forest Ecology and Management,2000,134(1/3):257-270. |
41 | PEI Z Q, LEPPERT K N, EICHENBER D,et al.Leaf litter diversity alters microbial activity,microbial abundances,and nutrient cycling in a subtropical forest ecosystem[J].Biogeochemistry,2017,134(1/2):163-181. |
42 | GUO Q, GONG L.Compared with pure forest,mixed forest alters microbial diversity and increases the complexity of interdomain networks in arid areas[J].Microbiology Spectrum,2024,12(1):e0264223. |
43 | GILLESPIE L M, HATTENSCHWILER S, MILCU A,et al.Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests[J].Functional Ecology,2021,35(10):2190-2204. |
44 | NIE H J, QIN T L, YAN D H,et al.How do tree species characteristics affect the bacterial community structure of subtropical natural mixed forests?[J].Science of The Total Environment,2021,764:144633. |
45 | KOUTIKA L S, FIORE A, TABACCHIONI S,et al.Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus plantations in the Congolese Coastal Plains[J].Sustainability,2020,12(21):8763. |
46 | LI W Q, HUANG Y X, CHEN F S,et al.Mixing with broad-leaved trees shapes the rhizosphere soil fungal communities of coniferous tree species in subtropical forests[J].Forest Ecology and Management,2021,480:118664. |
47 | ZHAO M L, ZHAO J, YUAN J,et al.Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J].Plant,Cell & Environment,2020,44(2):613-628. |
48 | 陈永康,谭许脉,李萌,等.珍贵固氮树种降香黄檀与二代巨尾桉混交种植对土壤微生物群落结构和功能的影响[J].广西植物,2021,41(9):1476-1485. |
CHEN Y K, TAN X M, LI M,et al.Effects of mixture of valuable nitrogen-fixing tree species Dalbergia odorifera and second-generation Eucalyptus urophylla on structure and function of soil microbial community in subtropical China[J].Guihaia,2021,41(9):1476-1485. | |
49 | OUYANG Y, EVANS S E, FRIESEN M L,et al.Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils:a meta-analysis of field studies[J].Soil Biology and Biochemistry,2018,127:71-78. |
50 | GORZELAK M A, ASAY A K, PICKLES B J,et al.Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities[J].AoB Plants,2015,7:plv050. |
51 | WAGG C, JANSA J, STADLER M,et al.Mycorrhizal fungal identity and diversity relaxes plant-plant competition[J].Ecology,2011,92(6):1303-1313. |
52 | LIU X B, BURSLEM D F R P, TAYLOR J D,et al.Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests[J].Ecology Letters,2018,21(5):713-723. |
53 | 江盈,邹锋,黄建,等.六个外生菌根真菌菌株在不同难溶性磷源下的溶磷特性[J].菌物学报,2023, 42(6):1311-1329. |
JIANG Y, ZOU F, HUANG J,et al.Phosphorus dissolving characteristics of six ectomycorrhizal fungal strains under different insoluble phosphorus sources[J].Mycosystema,2023,42(6):1311-1329. | |
54 | THAKUR M P, QUAST V, VAN DAM N M,et al.Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition[J].Oikos,2019,128(8):1136-1146. |
55 | YAO X Y, LI Y F, LIAO L N,et al.Enhancement of nutrient absorption and interspecific nitrogen transfer in a Eucalyptus urophylla × Eucalyptus grandis and Dalbergia odorifera mixed plantation[J].Forest Ecology and Management,2019,449:117465. |
56 | QIN F C, YANG F C, MING A G,et al.Mixture enhances microbial network complexity of soil carbon,nitrogen and phosphorus cycling in Eucalyptus plantations[J].Forest Ecology and Management,2024,553:121632. |
57 | STAMOU G P, MONOKROUSO N, GWYNN-JONES D,et al.A polyphasic approach for assessing ecosystem connectivity demonstrates that perturbation remodels network architecture in soil microcosms[J].Microbial Ecology,2019,78(4):949-960. |
58 | JIAO S, XU Y Q, ZHANG J,et al.Core microbiota in agricultural soils and their potential associations with nutrient cycling[J].mSystems,2019,4(2):e00313-18. |
59 | MENG W J, CHANG L, QU Z L,et al.Dominant tree species and litter quality govern fungal community dynamics during litter decomposition[J].Journal of Fungi,2024,10(10):690. |
60 | KATO K, HAMAGUCHI T, NAGAO R,et al.Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus [J].elife,2022,11:e73990. |
61 | ZHENG R K, WANG C, LIU R,et al.Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria[J].eLife,2024,12:RP89874. |
62 | 黄佩蓓,焦念志,冯洁,等.海洋浮霉状菌多样性与生态学功能研究进展[J].微生物学通报,2014,41(9):1891-1902. |
HUANG P B, JIAO N Z, FENG J,et al.Research progress on Planctomycetes’ diversity and ecological function in marine environments[J].Microbiology China,2014,41(9):1891-1902. |
[1] | 支君, 段文标, 高明, 胡伟, 李猛, 王姝人. 土地利用方式对土壤细菌群落结构和功能的影响[J]. 植物研究, 2025, 45(1): 22-33. |
[2] | 周浩然, 孙洪刚, 张鹏, 韩媛媛, 李文华. 混交对杉木和山杜英混交林生长、结构和生产力的影响[J]. 植物研究, 2024, 44(2): 307-320. |
[3] | 唐媛媛, 邓福英, 赵筱青, 黄佩, 陶俊逸, 周世杰, 储博程. 桉树引种对林下植物功能群的物种组成及其多样性的影响[J]. 植物研究, 2023, 43(6): 943-952. |
[4] | 罗萍, 张昊楠, 徐建民, 胡冰, 王晓萍, 李光友, 范春节. 发根农杆菌介导的尾巨桉遗传转化体系的建立[J]. 植物研究, 2022, 42(3): 512-520. |
[5] | 王泽琛, 刘亚梅, 欧阳乐军, 李莉梅, 梁楚炎, 潘璟茵. 一种带有可视化筛选标记的桉树基因编辑载体构建及验证研究[J]. 植物研究, 2021, 41(5): 816-823. |
[6] | 王敏, 周润惠, 余飞燕, 董洪君, 陈聪琳, 喻静, 郝建锋. 不同林龄桉树人工林林下物种多样性和生物量的动态变化[J]. 植物研究, 2021, 41(4): 496-505. |
[7] | 樊小红, 王立涛, 安娟艳, 孟冬, 杨清, 赵春建, 杨雨春, 付玉杰. 长白山东北红豆杉生境内针阔混交林直径结构分布研究[J]. 植物研究, 2021, 41(1): 89-97. |
[8] | 周泽建, 刘妮妮, 伍冰倩, 张红, 赵珩. 3种速生树种落叶水浸提液对走马胎幼苗生长的化感效应[J]. 植物研究, 2018, 38(4): 568-574. |
[9] | 彭瑶, 曹凤艳, 曲来叶. 兴安落叶松林不同强度火烧迹地土壤微生物群落特性研究[J]. 植物研究, 2017, 37(4): 549-555. |
[10] | 丁一阳1;毛子军1*;张玲2;丁力3. 小兴安岭原始阔叶红松林和枫桦次生林土壤有机碳库比较研究[J]. 植物研究, 2015, 35(4): 604-611. |
[11] | 孙红阳;王庆成. 张广才岭西坡45年生不同起源林分碳储量研究[J]. 植物研究, 2015, 35(3): 378-383. |
[12] | 胡海清;李莹;张冉;吴畏;孙龙*. 火干扰对小兴安岭两种典型林型土壤养分和土壤微生物生物量的影响[J]. 植物研究, 2015, 35(1): 101-109. |
[13] | 李月灵;金则新*;管铭;左威;. 铜胁迫条件下土壤微生物对海州香薷光合特性和叶绿素荧光参数的影响[J]. 植物研究, 2013, 33(6): 684-689. |
[14] | 高 远;姚 亮;邱振鲁;颜景浩. 山东五莲山植物群落结构及物种多样性[J]. 植物研究, 2008, 28(3): 359-363. |
[15] | 谷海燕;李策宏. 峨眉山常绿落叶阔叶混交林的生物多样性及植物区系初探[J]. 植物研究, 2006, 26(5): 618-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||