Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (5): 47-47.DOI: 10.1007/s13659-025-00531-w
• REVIEW • Previous Articles Next Articles
Ni Wayan Martiningsih1,2, Siska Elisahbet Sinaga3, Wahyu Safriansyah1, Unang Supratman1,4, Desi Harneti1
Received:2025-03-10
Online:2025-11-06
Contact:
Desi Harneti,E-mail:desi.harneti@unpad.ac.id
Supported by:Ni Wayan Martiningsih1,2, Siska Elisahbet Sinaga3, Wahyu Safriansyah1, Unang Supratman1,4, Desi Harneti1
通讯作者:
Desi Harneti,E-mail:desi.harneti@unpad.ac.id
基金资助:Ni Wayan Martiningsih, Siska Elisahbet Sinaga, Wahyu Safriansyah, Unang Supratman, Desi Harneti. Nitrogen-containing secondary metabolites from Meliaceae Family and their biological activity: a review[J]. Natural Products and Bioprospecting, 2025, 15(5): 47-47.
Ni Wayan Martiningsih, Siska Elisahbet Sinaga, Wahyu Safriansyah, Unang Supratman, Desi Harneti. Nitrogen-containing secondary metabolites from Meliaceae Family and their biological activity: a review[J]. 应用天然产物, 2025, 15(5): 47-47.
| [1] Wink M. Annual plant reviews volume 40: biochemistry of plant secondary metabolism. 2nd ed. Wiley-Blackwell: Hoboken; 2010. https://doi.org/10.1002/9781444320503.fmatter. [2] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285. [3] Kinghorn AD. Plants as sources of medicinally and pharmaceutically important compounds. US: Springer; 1992. https://doi.org/10.1007/978-1-4899-2584-8. [4] WFO. Meliaceae Juss. 2024. http://www.worldfloraonline.org/taxon/wfo-7000000373. Accessed 15 Jan 2024. [5] Paritala V, Chiruvella KK, Thammineni C, Ghanta RG, Mohammed A. Phytochemicals and antimicrobial potentials of mahogany family. Rev Bras Farmacogn. 2015;25(1):61-83. https://doi.org/10.1016/j.bjp.2014.11.009. [6] Supratman U, Naibaho W, Salam S, Maharani R, Hidayat AT, Harneti D, Shiono Y, Nurlelasari. Cytotoxic triterpenoids from the bark of Chisocheton patens Blume (Meliaceae). Phytochem Lett. 2019;30:81-7. https://doi.org/10.1016/j.phytol.2019.01.034. [7] Safriansyah W, Juliansyah E, Naini AA, Rustaman, Farabi K, Azmi MN, Nafiah MA, Kuncoro H, Supratman U, Fajriah S, Harneti D. Pachyphyllanone, a new cycloartane triterpenoid isolated from Aglaia pachyphylla and its cytotoxic activity. J Asian Nat Prod Res. 2025;10:1-8. https://doi.org/10.1080/10286020.2024.2446280. [8] Sinaga SE, Fajar M, Mayanti T, Supratman U. Bioactivities screening and elucidation of terpenoid from the stembark extracts of Lansium domesticum Corr. cv. kokosan (Meliaceae). Sustainability. 2023;15(3): 2140. https://doi.org/10.3390/su15032140. [9] Mayanti T, Sinaga SE, Supratman U. Phytochemistry and biological activity of Lansium domesticum Corr. species: a review. J Pharm Pharmacol. 2022;74(11):1568-87. https://doi.org/10.1093/jpp/rgac057. [10] Hidayat AT, Farabi K, Harneti D, Maharani R, Nurlelasari, Darwati, Mayanti T, Setiawan AS, Supratman U, Shiono Y. Cytotoxicity and structure activity relationship of dammarane-type triterpenoids from the bark of Aglaia elliptica against P-388 murine leukemia cells. Nat Prod Sci. 2017;23(4):291-8. https://doi.org/10.20307/nps.2017.23.4.291. [11] Fang FH, Huang WJ, Zhou SY, Han ZZ, Li MY, Liu LF, Wu XZ, Yao XJ, Li Y, Yuan CS. Aphapolins A and B: two nemoralisin diterpenoids isolated from Aphanamixis polystachya (Wall.) R. Parker. Eur J Org Chem. 2017. https://doi.org/10.1002/ejoc.201700795. [12] Najihah NA, Safriansyah W, Sinaga SE, Nafiah MA, Supratman U. Diterpenoid compounds derived from meliaceae plants and biological activities. Phytochem Rev. 2025. https://doi.org/10.1007/s11101-025-10110-z. [13] Lago HJG, Roque NF. New diterpenoids from leaves of Guarea macrophylla (Meliaceae). J Braz Chem Soc. 2005;16(3B):643-6. https://doi.org/10.1590/S0103-50532005000400024. [14] Liu S, Liu SB, Zuo WJ, Guo ZK, Mei WL, Dai HF. New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity. Fitoterapia. 2014;92:93-9. https://doi.org/10.1016/j.fitote.2013.10.013. [15] Safriansyah W, Abdullah FF, Juliansyah E, Farabi K, Harizon H, Kuncoro H, Nurlelasari N, Maharani R, Taib MNAM, Supratman U, Harneti D. Sesquiterpenoids from the stem bark of Aglaia pachyphylla Miq (Meliaceae) and cytotoxic activity against MCF-7 cancer cell line. J Kim Val. 2023;9(2):300-5. https://doi.org/10.15408/jkv.v9i2.32782. [16] Harneti D, Permatasari AA, Anisshabira A, Naini AA, Mayanti T, Maharani R, Safari A, Hidayat AT, Supratman U, Azmi MN, Shiono Y. Sesquiterpenoids from the stem bark of Aglaia grandis. Nat Prod Sci. 2022;28(1):6-12. https://doi.org/10.20307/nps.2022.28.1.6. [17] Farabi K, Harneti D, Maharani R, Nurlelasari, Hidayat AT, Awang K, Supratman U, Shiono Y. New cytotoxic pregnane-type steroid from the stem bark of Aglaia elliptica (Meliaceae). Rec Nat Prod. 2018;12(2):121-7. https://doi.org/10.25135/rnp.21.17.07.118. [18] Happi GM, Wouamba SCN, Ismail M, Kouam SF, Frese M, Lenta BN, Sewald N. Ergostane-type steroids from the Cameroonian ‘white tiama’ Entandrophragma angolense. Steroids. 2020. https://doi.org/10.1016/j.steroids.2020.108584. [19] Safriansyah W, Sinaga SE, Farabi K, Rustaman, Azmi MN, Maharani R, Nurlelasari N, Supratman U, Fajriah S, Harneti D. The isolation of novel pregnane steroids from Aglaia pachyphylla Miq. and the cytotoxicity against breast cancer cell lines (MCF-7). RSC Adv. 2024;14(34):25042-7. https://doi.org/10.1039/D4RA04727C. [20] Nurlelasari, Supriatno, Herlina T, Harneti D, Maharani R, Hidayat AT, Mayanti T, Supratman U, Azmi MN, Shiono Y. A new limonoid from stem bark of Chisocheton pentandrus (Meliaceae). Nat Prod Res. 2018;32(21):2610-6. https://doi.org/10.1080/14786419.2018.1428600. [21] Farabi K, Harneti D, Maharani R, Nurlelasari, Hidayat AT, Awang K, Supratman U, Shiono Y. New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae). Phytochem Lett. 2017;21:211-5. https://doi.org/10.1016/j.phytol.2017.07.006. [22] Huda MB, Nurlelasari, Safriansyah W, Supratman U, Budiman YP, Puspa DHP, Maharani R, Mayanti T, Farabi K, Fajriah S. A Novel Limonoid from the seeds of Chisocheton macrophyllus. Rec Nat Prod. 2024;18(3):347-51. https://doi.org/10.25135/rnp.451.2311.2960. [23] Sianturi J, Purnamasari M, Mayanti T, Harneti D, Supratman U. Flavonoid compounds from the bark of Aglaia eximia (Meliaceae). Makara J Sci. 2015. https://doi.org/10.7454/mss.v19i1.4476. [24] Pereira C, Júnior CBB, Kuster RM, Simas NK, Sakuragui CM, Porzel A, Wessjohann L. Flavonoids and a neolignan glucoside from Guarea macrophylla (Meliaceae). Quim Nova. 2012;35(6):1123-6. https://doi.org/10.1590/S0100-40422012000600010. [25] Peng L, Fu WX, Zeng CX, Zhou L, Bao MF, Cai XH. Two new lignans from twigs of Aglaia odorata. J Asian Nat Prod Res. 2016;18(2):147-52. https://doi.org/10.1080/10286020.2015.1057575. [26] An FL, Xu WJ, Yang MH, Luo J, Kong LY. Anti-inflammatory flavagline glycosides and putrescine bisamides from Aglaia perviridis leaves. Tetrahedron. 2020. https://doi.org/10.1016/j.tet.2020.131257. [27] Pan L, Acuña UM, Li J, Jena N, Ninh TN, Pannell CM, Chai H, Fuchs JR, de Carcache BlancoSoejarto EJDD, Kinghorn AD. Bioactive flavaglines and other constituents isolated from Aglaia perviridis. J Nat Prod. 2013;76(3):394-404. https://doi.org/10.1021/np3007588. [28] Chumkaew P, Teerapongpisan P, Pechwang J, Srisawat T. New oxoprotoberberine and aporphine alkaloids from the roots of Amoora cucullata with their antiproliferative activites. Rec Nat Prod. 2019;13(6):491-8. https://doi.org/10.25135/rnp.128.19.02.1181. [29] Yang X, Yu Y, Wu P, Liu J, Li Y, Tao L, Tan R, Hao X, Yuan C, Yi P. Phenolic and bisamide derivatives from Aglaia odorata and their biological activities. Nat Prod Res. 2023;37(23):3923-34. https://doi.org/10.1080/14786419.2022.2162514. [30] Purushothaman KK, Sarada A, Connolly JD, Akinniyi JA. The structure of roxburghilin, a bis-amide of 2-aminopyrrolidine from the leaves of Aglaia roxburghiana (Meliaceae). J Chem Soc, Perkin Trans. 1979;1:3171-4. https://doi.org/10.1039/P19790003171. [31] Shiengthong D, Ungphakorn A, Lewis DE, Massy-Westropp RA. Constituents of Thai medicinal plants - IV new nitrogenous compounds - odorine and odorinol. Tetrahedron Lett. 1979;20(24):2247-50. https://doi.org/10.1016/S0040-4039(01)93688-3. [32] Harmon AD, Weiss U, Silverton JV. The structure of rohitukine, the main alkaloid of Amoora rohituka (Syn. Aphanamixis polystachya) (Meliaceae). Tetrahedron Lett. 1979;8:721-4. https://doi.org/10.1016/S0040-4039(01)93556-7. [33] Jain SK, Meena S, Qazi AK, Hussain A, Bhola SK, Kshirsagar R, Pari K, Khajuria A, Hamid A, Shaanker RU, Bharate SB, Vishwakarma RA. Isolation and biological evaluation of chromone alkaloid dysoline, a new regioisomer of rohitukine from Dysoxylum binectariferum. Tetrahedron Lett. 2013;54(52):7140-3. https://doi.org/10.1016/j.tetlet.2013.10.096. [34] Wu PF, Liu J, Li YN, Ding R, Tan R, Yang XM, Yu Y, Hao XJ, Yuan CM, Yi P. Three new aglain derivatives from Aglaia odorata Lour. and their cytotoxic activities. Chem Biodivers. 2022. https://doi.org/10.1002/cbdv.202101008. [35] Peng L, Fu WX, Zeng CX, Zhou L, Bao MF, Cai XH. Two new lignans from twigs of Aglaia odorata. J Asian Nat Prod Res. 2015;18(2):147-52. https://doi.org/10.1080/10286020.2015.1057575. [36] Ishibashi F, Satasook C, Isman MB, Towers GHN. Insecticidal 1H-cyclopentatetrahydro[b]benzofurans from Aglaia odorata. Phytochemistry. 1993;32:307-10. https://doi.org/10.1016/S0031-9422(00)94986-0. [37] Molleyres LP, Rindlisbacher A, Winkler T, Kumar V. Insecticidal natural products new rocaglamide derivatives from Aglaia roxburghiana. Pestic Sci. 1999;55:494-7. [38] Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P. An insecticidal rocaglamide derivatives and related compounds from Aglaia odorata (Meliaceae). Phytochemistry. 1999;51:367-76. https://doi.org/10.1016/S0031-9422(98)00751-1. [39] Kumar V, Gupta M, Gandhi SG, Bharate SS, Kumar A, Vishwakarma RA, Bharate SB. Anti-inflammatory chromone alkaloids and glycoside from Dysoxylum binectariferum. Tetrahedron Lett. 2017;58(42):3974-8. https://doi.org/10.1016/j.tetlet.2017.09.005. [40] Yodsaoue O, Sonprasit J, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry. 2012;76:83-91. https://doi.org/10.1016/j.phytochem.2012.01.015. [41] Aladesanmi AJ, Adewunmi CO. Molluscicidal properties of the new constituents from the stem of Dysoxylum lenticellare on Biomphalaria glabrata. Phytother Res. 1990. https://doi.org/10.1002/ptr.2650040211. [42] Adewunmi CO, Aladesanmi AJ. Molluscicidal activities of Dysoxylum lenticellare Gillespie constituents on Biomphalaria glabrata say. Phytother Res. 1988;2(2):104-6. https://doi.org/10.1002/ptr.2650020211. [43] Aladesanmi AJ, Adewunmi CO, Kelley CJ, Leary JD, Bischoff TA, Zhang X, Snyder JK. Lenticellarine, a molluscicidal alkaloid from Dysoxylum lenticellare. Phytochemistry. 1988;27(12):3789-92. https://doi.org/10.1016/0031-9422(88)83018-8. [44] Chumkaew P, Teerapongpisan P, Pechwang J. Two new aporphine alkaloids from Amoora cucullata and their antibacterial activity. Chem Nat Compd. 2021;57(5):907-10. https://doi.org/10.1007/s10600-021-03508-6. [45] Chumkaew P, Srisawat T. A new antimalarial aporphine alkaloid from the leaves of Amoora cucullata. Chem Nat Compd. 2022;58(6):1085-8. https://doi.org/10.1007/s10600-022-03875-8. [46] Heads M. Biogeography and ecology in a pantropical family, the Meliaceae. Gardens Bull Singapore. 2019;71(Suppl. 2):335-461. https://doi.org/10.26492/gbs71(suppl.2).2019-22. [47] Mabberley DJ. The families and genera of vascular plants (flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae). Berlin: Springer; 2011. https://doi.org/10.1007/978-3-642-14397-7. [48] Dewick PM. Medicinal natural products: a biosynthetic approach. 3rd ed. John Wiley & Sons Ltd: Hoboken; 2009. [49] Aladesanmi AJ, Kelley CJ, Leary JD. The constituents of Dysoxylum lenticellare. I. Phenylethylisoquinoline, homoerythrina, and dibenzazecine alkaloids. J Nat Prod. 1983;46(1):127-31. https://doi.org/10.1021/np50025a014. [50] Aladesanmi AJ. The stem constituents of Dysoxylum lenticellare. Tetrahedron. 1988;44:3749-56. https://doi.org/10.1016/S0040-4020(01)86004-X. [51] Aladesanmi AJ, Hoffmann JJ. Additional alkaloids from the stem of Dysoxylum lenticellare. Phytochemistry. 1994;35(5):1361-2. https://doi.org/10.1016/S0031-9422(06)80125-1. [52] Vardamides JC, Dongmo AB, Meyer M, Ndom JC, Azebaze AGB, Zounda MRS, Sielinou VT, Ndemangou B, Nkengfack AE, Ngando TM, Fomum ZT. Alkaloids from the stem bark of Turraeanthus africanus (Meliaceae). Chem Pharm Bull. 2006;54(7):1034-6. https://doi.org/10.1248/cpb.54.1034. [53] Shen LR, Guo D, Yu YM, Yin BW, Zhao L, Shi QW, Wang YL, Huo CH. Chemical constituents of plants from the genus Xylocarpus. Chem Biodivers. 2009;6:1293-308. https://doi.org/10.1002/cbdv.200800025. [54] Jain SK, Meena S, Gupta AP, Kushwaha M, Shaanker RU, Jaglan S, Bharate SB, Vishwakarma RA. Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: bioactivity-guided isolation and LCMS-based quantification. Bioorg Med Chem Lett. 2014;24(14):3146-9. https://doi.org/10.1016/j.bmcl.2014.05.001. [55] Ismail IS, Nagakura Y, Hirasawa Y, Hosoya T, Lazim MIM, Lajis NH, Shiro M, Morita H. Chrotacumines A-D, chromone alkaloids from Dysoxylum acutangulum. J Nat Prod. 2009;72(10):1879-83. https://doi.org/10.1021/np9003849. [56] Mohanakumara P, Sreejayan N, Priti V, Ramesha BT, Ravikanth G, Ganeshaiah KN, Vasudeva R, Mohan J, Santhoshkumar TR, Mishra PD, Ram V, Shaanker RU. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine. Fitoterapia. 2010;81(2):145-8. https://doi.org/10.1016/j.fitote.2009.08.010. [57] Kamil M, Safia, Jadiya P, Sheikh S, Haque E, Nazir A, Lakshmi V, Mir SS. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0137991. [58] Yang DH, Cai SQ, Zhao YY, Liang H. A new alkaloid from Dysoxylum binectariferum. J Asian Nat Prod Res. 2004;6(3):233-6. https://doi.org/10.1080/10286020310001608930. [59] Lazim MIM, Ismail IS, Shaari K, Latip JA, Al-Mekhlafi NA, Morita H. Chrotacumines E and F, two new chromone-alkaloid analogs from Dysoxylum acutangulum (Meliaceae) leaves. Chem Biodivers. 2013;10:1589-96. https://doi.org/10.1002/cbdv.201200391. [60] Morita H, Nugroho AE, Nagakura Y, Hirasawa Y, Yoshida H, Kaneda T, Shirota O, Ismail IS. Chrotacumines G-J, chromone alkaloids from Dysoxylum acutangulum with osteoclast differentiation inhibitory activity. Bioorg Med Chem Lett. 2014;24(11):2437-9. https://doi.org/10.1016/j.bmcl.2014.04.020. [61] Greger H, Hofer M, Teichmann K, Schinnerl J, Pannell CM, Vajrodaya S, Hofer O. Amide-esters from Aglaia tenuicaulis - first representatives of a class of compounds structurally related to bisamides and flavaglines. Phytochemistry. 2008;69(4):928-38. https://doi.org/10.1016/j.phytochem.2007.10.015. [62] Kim S, Chin YW, Su BN, Riswan S, Kardono LBS, Afriastini JJ, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn D. Cytotoxic flavaglines and bisamides from Aglaia edulis. J Nat Prod. 2006;69(12):1769-75. https://doi.org/10.1021/np060428x. [63] Chin YW, Chae HS, Lee J, Bach TT, Ahn KS, Lee HK, Joung H, Oh SR. Bisamides from the twigs of Aglaia perviridis collected in Vietnam. Bull Korean Chem Soc. 2010;31(9):2665-7. https://doi.org/10.5012/bkcs.2010.31.9.2665. [64] Shi ZR, Zhang H, Zhang XY, Wu WB, Li HR, Yue JM. Two new bisamides from the leaves of Aglaia perviridis. J Asian Nat Prod Res. 2016;18(5):443-9. https://doi.org/10.1080/10286020.2015.1123694. [65] Saifah E, Puripattanavong J, Likhitwitayawuid K, Cordell GA, Chai H, Pezzuto JM. Bisamides from Aglaia species: structure analysis and potential to reverse drug resistance with cultured cells. J Nat Prod. 1993;56(4):473-7. https://doi.org/10.1021/np50094a004. [66] Salim AA, Chai HB, Rachman I, Riswan S, Kardono LBS, Farnsworth NR, Carcache-Blanco EJ, Kinghorn AD. Constituents of the leaves and stem bark of Aglaia foveolata. Tetrahedron. 2007;63(33):7926-34. https://doi.org/10.1016/j.tet.2007.05.074. [67] Greger H, Pacher T, Brem B, Bacher M, Hofer O. Insecticidal flavaglines and other compounds from Fijian Aglaia species. Phytochemistry. 2001;57:57-64. https://doi.org/10.1016/s0031-9422(00)00471-4. [68] Puripattanavong J, Weber S, Brecht V, Frahm AW. Phytochemical investigation of Aglaia andamanica. Planta Med. 2000;66:740-5. https://doi.org/10.1055/s-2000-9901. [69] Joycharat N, Greger H, Hofer O, Saifah E. Flavaglines and triterpenoids from the leaves of Aglaia forbesii. Phytochemistry. 2008;69(1):206-11. https://doi.org/10.1016/j.phytochem.2007.06.016. [70] Saifah E, Suttisri R, Shamsub S, Pengsuparp T, Lipipun V. Bisamides from Aglaia edulis. Phytochemistry. 1999;52:1085-8. https://doi.org/10.1016/S0031-9422(99)00378-7. [71] Saifah E, Jongbunprasert V, Kelley CJ. Piriferine, a new pyrrolidine alkaloid from Aglaia pirifera leaves. J Nat Prod. 1988;51(1):80-2. https://doi.org/10.1021/np50055a010. [72] Wang SK, Cheng YJ, Duh CY. Cytotoxic constituents from leaves of Aglaia elliptifolia. J Nat Prod. 2001;64(1):92-4. https://doi.org/10.1021/np000341q. [73] Wang BG, Peng H, Huang HL, Li XM, Eck G, Gong X, Proksch P. Rocaglamide, aglain, and other related derivatives from Aglaia testicularis (Meliaceae). Biochem Syst Ecol. 2004;32(12):1223-6. https://doi.org/10.1016/j.bse.2004.05.005. [74] Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O. Bisamides, lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod. 1998;61(12):1482-90. https://doi.org/10.1021/np9801965. [75] Shiengthong D, Ungphakorn A, Lewis DE, Massy-Westropp RA. Constituents of Thai medicinal plants-IV new nitrogenous compounds-odorine and odorinol. Tetrahedron Lett. 1979. https://doi.org/10.1016/S0040-4039(01)93688-3. [76] Dumontet V, Thoison O, Omobuwajo OR, Martin MT, Perromat G, Chiaroni A, Riche C, Païs M, Sévenet T. New nitrogenous and aromatic derivatives from Aglaia argentea and A. forbesii. Tetrahedron. 1996;52(20):6931-42. https://doi.org/10.1016/0040-4020(96)00322-5. [77] Xu YJ, Wu XH, Tan BKH, Lai YH, Vittal JJ, Imiyabir Z, Madani L, Khozirah KS, Goh SH. Flavonol-cinnamate cycloadducts and diamide derivatives from Aglaia laxiflora. J Nat Prod. 2000;63(4):473-6. https://doi.org/10.1021/np990454d. [78] Inada A, Sorano T, Murata H, Inatomi Y, Darnaedi D, Nakanishi T. Diamide derivatives and cycloartanes from the leaves of Aglaia elliptica. Chem Pharm Bull. 2001;49(9):1226-8. https://doi.org/10.1248/cpb.49.1226. [79] Joycharat N, Greger H, Hofer O, Saifah E. Flavaglines and triterpenes as chemical markers of Aglaia oligophylla. Biochem Syst Ecol. 2008;36(7):584-7. https://doi.org/10.1016/j.bse.2008.03.009. [80] Seger C, Pacher T, Greger H, Saifah E, Hofer O. Aglairubine: structure revision of a chemotaxonomically interesting bisamide in Aglaia (Meliaceae). Monatshefte für Chemie/Chemical Monthly. 2002;133:97-100. https://doi.org/10.1007/s007060270010. |
| [1] | Olusesan Ojo, Idris Njanje, Dele Abdissa, Tarryn Swart, Roxanne L. Higgitt, Rosemary A. Dorrington. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials [J]. Natural Products and Bioprospecting, 2025, 15(2): 19-19. |
| [2] | Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling [J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30. |
| [3] | Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond [J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5. |
| [4] | Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5 [J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8. |
| [5] | Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites [J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40. |
| [6] | Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola [J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28. |
| [7] | Yu Minamida, Hiroshi Matsuura, Takahiro Ishii, Miyu Miyagi, Yuto Shinjo, Kosuke Sato, Takashi Kamada, Yoshihiro Mihara, Iwao Togashi, Keisuke Sugimoto, Tsuyoshi Abe, Norio Kikuchi, Minoru Suzuki. New acetogenin katsuurallene from Laurencia saitoi collected from Katsuura, Japan [J]. Natural Products and Bioprospecting, 2022, 12(2): 10-10. |
| [8] | Ke Ye, Hong-Lian Ai, Ji-Kai Liu. Identification and Bioactivities of Secondary Metabolites Derived from Endophytic Fungi Isolated from Ethnomedicinal Plants of Tujia in Hubei Province: A Review [J]. Natural Products and Bioprospecting, 2021, 11(2): 185-205. |
| [9] | Pan-Pan Zhang, Yun-Ge Bu, Shang Xue, Zhi-Rong Cui, Peng-Fei Tang, Jun Luo, Ling-Yi Kong. Four New Limonoids from the Barks of Toona ciliata [J]. Natural Products and Bioprospecting, 2021, 11(1): 81-86. |
| [10] | Rong Chen, Jian-Wei Tang, Xing-Ren Li, Miao Liu, Wen-Ping Ding, Yuan-Fei Zhou, Wei-Guang Wang, Xue Du, Han-Dong Sun, Pema-Tenzin Puno. Secondary Metabolites from the Endophytic Fungus Xylaria sp. Hg1009 [J]. Natural Products and Bioprospecting, 2018, 8(2): 121-129. |
| [11] | Dong Wang, Shu-Qun Zhang, Zhe Chang, De-Xin Kong, Zhi-Li Zuo. Quebrachitol: Global Status and Basic Research [J]. Natural Products and Bioprospecting, 2017, 7(1): 113-122. |
| [12] | Ming-Ming Zhai, Jie Li, Chun-Xiao Jiang, Yan-Ping Shi, Duo-Long Di, Phillip Crews, Quan-Xiang Wu. The Bioactive Secondary Metabolites from Talaromyces species [J]. Natural Products and Bioprospecting, 2016, 6(1): 1-24. |
| [13] | Frank Surup, Eric Kuhnert, Elena Liscinskij, Marc Stadler. Silphiperfolene-Type Terpenoids and Other Metabolites from Cultures of the Tropical Ascomycete Hypoxylon rickii(Xylariaceae) [J]. Natural Products and Bioprospecting, 2015, 5(3): 167-173. |
| [14] | Wei-Ming Zhang, Jie-Qing Liu, Xing-Rong Peng, Luo-Sheng Wan, Zhi-Run Zhang, Zhong-Rong Li, Ming-Hua Qiu. Triterpenoids and Sterols from the Leaves and Twigs of Melia azedarach [J]. Natural Products and Bioprospecting, 2014, 4(3): 157-162. |
| [15] | Wei-Ming Zhang, Jie-Qing Liu, Yuan-Yuan Deng, Jian-Jun Xia, Zhi-Run Zhang, Zhong-Rong Li, Ming-Hua Qiu. Diterpenoids and Limonoids from the Leaves and Twigs of Swietenia mahagoni [J]. Natural Products and Bioprospecting, 2014, 4(1): 53-57. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
