Natural Products and Bioprospecting ›› 2024, Vol. 14 ›› Issue (1): 8-8.DOI: 10.1007/s13659-024-00429-z
• ORIGINAL ARTICLES • Previous Articles Next Articles
Weiwei Peng1,3, Qi Huang1,4, Xin Ke1,3, Wenxuan Wang1, Yan Chen1,3, Zihuan Sang1,3, Chen Chen1,3, Siyu Qin1, Yuting Zheng1, Haibo Tan1,2,3, Zhenxing Zou1
Received:
2023-12-07
Online:
2024-02-19
Published:
2024-02-24
Contact:
Haibo Tan,E-mail:tanhaibo@scbg.ac.cn;Zhenxing Zou,E-mail:zouzhenxing@csu.edu.cn
Supported by:
Weiwei Peng1,3, Qi Huang1,4, Xin Ke1,3, Wenxuan Wang1, Yan Chen1,3, Zihuan Sang1,3, Chen Chen1,3, Siyu Qin1, Yuting Zheng1, Haibo Tan1,2,3, Zhenxing Zou1
通讯作者:
Haibo Tan,E-mail:tanhaibo@scbg.ac.cn;Zhenxing Zou,E-mail:zouzhenxing@csu.edu.cn
基金资助:
Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8.
Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. 应用天然产物, 2024, 14(1): 8-8.
[1] Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 2011;90:1829–45. https://doi.org/10.1007/s00253-011-3270-y.<br /> [2] Liu JJ, Liu G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol Biol. 2018;1848:25–38. https://doi.org/10.1007/978-1-4939-8724-5_3.<br /> [3] Song FH, Dai HQ, Tong YJ, Ren B, Chen C, Sun N, et al. Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod. 2010;73:806–10. https://doi.org/10.1021/np900642p.<br /> [4] Sun Y, Tian L, Huang J, Ma HY, Zheng Z, Lv A, et al. Trichodermatides A-D, novel polyketides from the marine-derived fungus Trichoderma reesei. Org Lett. 2008;10:393–6. https://doi.org/10.1021/ol702674f.<br /> [5] Shi XS, Li HL, Li XM, Wang DJ, Li X, Meng LH, et al. Highly oxygenated polyketides produced by <i>Trichoderma koningiopsis</i> QA-3, an endophytic fungus obtained from the fresh roots of the medicinal plant <i>Artemisia argyi</i>. Bioorg Chem. 2020;94: 103448. https://doi.org/10.1016/j.bioorg.2019.103448.<br /> [6] Chavez JR, Raja HA, Gra TN, Gallagher JM, Metri P, Xue D, et al. Prealamethicin F50 and related peptaibols from <i>Trichoderma arundinaceum</i>: validation of their authenticity via in situ chemical analysis. RSC Adv. 2017;7:45733–41. https://doi.org/10.1039/c7ra09602j.<br /> [7] Miao FP, Liang XR, Yin XL, Wang G, Ji NY. Absolute configurations of unique harziane diterpenes from <i>Trichoderma species</i>. Org Lett. 2012;14:3815–7. https://doi.org/10.1021/ol3014717.<br /> [8] Chen SC, Li HH, Chen YC, Li SN, Xu JL, Guo H, et al. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus <i>Trichoderma koningiopsis</i> A729. Bioorg Chem. 2019;86:368–74. https://doi.org/10.1016/j.bioorg.2019.02.005.<br /> [9] Shi XS, Meng L, Li X, Wang DJ, Zhou XW, Du FY, et al. Polyketides and terpenoids with potent antibacterial activities from the <i>Artemisia argyi</i>-derived fungus <i>Trichoderma koningiopsis</i> QA-3. Chem Biodivers. 2020;17: e2000566. https://doi.org/10.1002/cbdv.202000566.<br /> [10] Song YP, Miao FP, Fang ST, Yin XL, Ji NY. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus <i>Trichoderma asperellum</i> cf44-2. Mar Drugs. 2018;16:266. https://doi.org/10.3390/md16080266.<br /> [11] Li MF, Li GH, Zhang KQ. Non-volatile metabolites from Trichoderma spp. Metabolites. 2019;9:58. https://doi.org/10.3390/metabo9030058.<br /> [12] Zhou P, Wu ZD, Tan DD, Yang J, Zhou Q, Zeng FR, et al. Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain <i>Trichoderma atroviride</i>. Fitoterapia. 2017;123:18–22. https://doi.org/10.1016/j.fitote.2017.09.012.<br /> [13] Hu X, Gong MW, Zhang WW, Zheng QH, Liu QY, Chen L, et al. Novel cytotoxic metabolites from the marine-derived fungus <i>Trichoderma citrinoviride</i>. Heterocycles. 2014;89:189–96. https://doi.org/10.1002/chin.201424217.<br /> [14] Ding G, Wang HL, Li L, Chen AJ, Chen L, Chen H, et al. Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus <i>Trichoderma gamsii</i>. Eur J Org Chem. 2012;2012:2516–9. https://doi.org/10.1002/ejoc.201200053.<br /> [15] Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent <i>Trichoderma</i>. Phytochemistry. 2008;7:89–123. https://doi.org/10.1007/s11101-006-9032-2.<br /> [16] El-Hasan A, Walker F, Schone J, Buchenauer H. Detection of viridiofungin A and other antifungal metabolites excreted by <i>Trichoderma harzianum</i> active against different plant pathogens. Eur J Plant Pathol. 2009;124:457–70. https://doi.org/10.1007/s10658-009-9433-3.<br /> [17] Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. Identification and profiling of volatile metabolites of the biocontrol fungus <i>Trichoderma atroviride</i> by HS-SPME-GC-MS. J Microbiol Methods. 2010;8:187–93. https://doi.org/10.1016/j.mimet.2010.03.011.<br /> [18] Mukherjee M, Mukherjee PK, Horwitz BA, Berg CG, Zeilinger S. <i>Trichoderma</i>-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol. 2012;52:522–9. https://doi.org/10.1007/s12088-012-0308-5.<br /> [19] Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from <i>Trichoderma</i> spp. against phytopathogenic fungi. Microorganisms. 2020;8:817. https://doi.org/10.3390/microorganisms8060817.<br /> [20] Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M. <i>Trichoderma</i> secondary metabolites that affect plant metabolism. Nat Prod Commun. 2012;7:1545–50. https://doi.org/10.1177/1934578x1200701133.<br /> [21] Liu K, Yang YB, Miao CP, Zheng YK, Chen JL, Chen YW, et al. Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta Med. 2016;82:371–6. https://doi.org/10.1055/s-0035-1558228.<br /> [22] Wang YL, Hu BY, Qian MA, Wang ZH, Zou JM, Sang XY, et al. Koninginin W, a new polyketide from the endophytic fungus <i>Trichoderma koningiopsis</i> YIM PH30002. Chem Biodivers. 2021;18: e2100460. https://doi.org/10.1002/cbdv.202100460.<br /> [23] Cutler HG, Cutler SJ, Ross SA, Sayed KE, Dugan FM, Bartlett MG, et al. Koninginin G, a new metabolite from <i>Trichoderma aureoviride</i>. J Nat Prod. 1999;62:137–9. https://doi.org/10.1021/np9801817.<br /> [24] Hu M, Li QL, Yang YB, Liu K, Miao CP, Zhao LX, et al. Koninginins R-S from the endophytic fungus <i>Trichoderma koningiopsis</i>. Nat Prod Res. 2017;31:835–9. https://doi.org/10.1080/14786419.2016.1250086.<br /> [25] Liu K, Yang YB, Chen JL, Miao CP, Wang Q, Zhou H, et al. Koninginins N-Q, polyketides from the endophytic fungus <i>Trichoderma koningiopsis</i> harbored in Panax notoginseng. Nat Prod Bioprospect. 2016;6:49–55. https://doi.org/10.1007/s13659-015-0085-z.<br /> [26] Lang BY, Li J, Zhou XX, Chen YH, Yang YH, Li XN, et al. Koninginins L and M, two polyketides from <i>Trichoderma koningii</i> 8662. Phytochem Lett. 2015;11:1–4. https://doi.org/10.1016/j.phytol.2014.10.031.<br /> [27] Zhou XX, Li J, Yang YH, Zeng Y, Zhao PJ. Three new koninginins from <i>Trichoderma neokongii</i> 8722. Phytochem Lett. 2014;8:137–40. https://doi.org/10.1016/j.phytol.2014.03.004.<br /> [28] Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, et al. Antimicrobial polyketides from <i>Trichoderma koningiopsis</i> QA-3, an endophytic fungus obtained from the medicinal plant <i>Artemisia argyi</i>. RSC Adv. 2017;7:51335–42. https://doi.org/10.1039/C7RA11122C.<br /> [29] Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL. An antibiotic from <i>Trichoderma Koningii</i> active against soilborne plant pathogens. J Nat Prod. 1989;52:67–74. https://doi.org/10.1021/np50061a008.<br /> [30] Parker SR, Cutler HG, Schreiner PR. Koninginin E: isolation of a biologically active natural product from <i>Trichoderma koningii</i>. Biosci Biotechnol Biochem. 1995;59:1747–9. https://doi.org/10.1271/bbb.59.1747.<br /> [31] Ghisalberti EL, Rowland CY. Antifungal metabolites from <i>Trichoderma harzianum</i>. J Nat Prod. 1993;56:1799–804. https://doi.org/10.1021/np50100a020.<br /> [32] Kang FH, Lu XX, Zhang S, Chen DK, Kuang M, Peng WW, et al. Diaportones A-C: three new metabolites from endophytic fungus <i>Diaporthe foeniculina</i> BZM-15. Front Chem. 2021;9: 755351. https://doi.org/10.3389/fchem.2021.755351.<br /> [33] Lu XX, Zhang YJ, Zhang WG, Wang H, Zhang J, Wang SS, et al. Cyclohexanone and phenolic acid derivatives from endophytic fungus <i>Diaporthe foeniculina</i>. Front Chem. 2021;9: 738307. https://doi.org/10.3389/fchem.2021.738307.<br /> [34] Zhang S, Chen DK, Kuang M, Peng WW, Chen Y, Tan JB, et al. Rhytidhylides A and B, two new phthalide derivatives from the endophytic fungus <i>Rhytidhysteron</i> sp. BZM-9. Molecules. 2021;26:6092. https://doi.org/10.3390/molecules26206092.<br /> [35] Zhang S, Wang WX, Tan JB, Kang FH, Chen DK, Xu KP, et al. Rhytidhyesters A-D, 4 new chlorinated cyclopentene derivatives from the endophytic fungus <i>Rhytidhysteron</i> sp. BZM-9. Planta Med. 2021;87:489–97. https://doi.org/10.1055/a-1429-3396.<br /> [36] Zhang WG, Lu XX, Huo LQ, Zhang S, Chen Y, Zou ZX, et al. Sesquiterpenes and steroids from an endophytic <i>Eutypella scoparia</i>. J Nat Prod. 2021;84:1715–24. https://doi.org/10.1021/acs.jnatprod.0c01167.<br /> [37] Zhang WG, Lu XX, Wang H, Chen Y, Zhang J, Zou ZX, et al. Antibacterial secondary metabolites from the endophytic fungus <i>Eutypella scoparia</i> SCBG-8. Tetrahedron Lett. 2021;79: 153314. https://doi.org/10.1016/j.tetlet.2021.153314.<br /> [38] Peng WW, Kuang M, Huang YT, Li MF, Zheng YT, Xu L, et al. Pseudocercones A-C, three new polyketide derivatives from the endophytic fungus <i>Pseudocercospora</i> sp. TSS-1. Nat Prod Res. 2022. https://doi.org/10.1080/14786419.2022.2138874.<br /> [39] Kuang M, Peng WW, Huang YT, Li MF, Qin SY, Zheng YT, et al. Two new chromone derivatives from the rhizosphere soil fungus <i>Ilyonectria robusta</i>. Nat Prod Res. 2022. https://doi.org/10.1080/14786419.2022.2147169.<br /> [40] Chen Y, Wang H, Ke X, Sang ZH, Kuang M, Peng WW, et al. Five new secondary metabolites from an endophytic fungus <i>Phomopsis</i> sp. SZSJ-7B. Front Plant Sci. 2022;13:1049015. https://doi.org/10.3389/fpls.2022.1049015.<br /> [41] Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH. Koninginin A—a novel plant-growth regulator from <i>Trichoderma-koningii</i>. Agr Biol Chem Tokyo. 1989;53:2605–11. https://doi.org/10.1080/00021369.1989.10869746.<br /> [42] Ditchfield R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys. 1972;56:5688–91. https://doi.org/10.1063/1.1677088.<br /> [43] McWeeny R. Perturbation theory for the fock-dirac density matrix. Phys Rev. 1961;126:1028–34. https://doi.org/10.1103/PhysRev.126.1028.<br /> [44] Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–20. https://doi.org/10.1039/b810189b.<br /> [45] Li J, Liu JK, Wang WX. GIAO <sup>13</sup>C NMR calculation with sorted training sets improves accuracy and reliability for structural assignation. J Org Chem. 2020;85:11350–8. https://doi.org/10.1021/acs.joc.0c01451.<br /> [46] Snatzke G. Circular dichroism and absolute conformation: application of qualitative MO theory to chiroptical phenomena. Angew Chem Int Ed Engl. 1979;18:363–77. https://doi.org/10.1002/anie.197903631.<br /> [47] Frelek J, Snatzke G. Circulardichroismus-LXXX: bestimmung der absoluten konfiguration von 1-substituierten glycerin-derivaten und anderen aliphatischen vic-glykolen im mikromaßstab. Z Anal Chem. 1983;316:261–4. https://doi.org/10.1007/BF00594067.<br /> [48] Snatzke G, Wagner U, Wolff HP. Circulardichroism-LXXV1: Cottonogenic derivatives of chiral bidentate ligands with the complex [Mo<sub>2</sub> (O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>]. Tetrahedron. 1981;37:349–61. https://doi.org/10.1016/S0040-4020(01)92021-6.<br /> [49] Frelek J, Klimek A, Ruskowska P. Dinuclear transition metal complexes as auxiliary chromophores in chiroptical studies on bioactive compounds. Curr Org Chem. 2003;7:1081–104. https://doi.org/10.2174/1385272033486576.<br /> [50] Politi M, De-Tommasi N, Pescitelli G, Di-Bari L, Morelli I, Braca A. Structure and absolute configuration of new diterpenes from <i>Lavandula multifida</i>. J Nat Prod. 2002;65:1742–5. https://doi.org/10.1021/np020260p.<br /> [51] Gao Y, Duan FF, Liu L, Peng XG, Meng XG, Ruan HL. Hypothemycin-type resorcylic acid lactones with immunosuppressive activities from a <i>Podospora</i> sp. J Nat Prod. 2021;84:483–94. https://doi.org/10.1021/acs.jnatprod.0c01344.<br /> [52] Di-Bari L, Pescitelli G, Pratelli C, Pini D, Salvadori P. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4 1 Snatzke’s method revisited. J Org Chem. 2021;66:4819–25. https://doi.org/10.1021/jo010136v.<br /> [53] Jo MS, Lee S, Yu JS, Baek SC, Cho YC, Kim KH. Megastigmane derivatives from the cladodes of <i>Opuntia humifusa</i> and their nitric oxide inhibitory activities in macrophages. J Nat Prod. 2020;83:684–92. https://doi.org/10.1021/acs.jnatprod.9b01120.<br /> [54] Zhao LY, Liu HX, Huo LQ, Wang MM, Yang B, et al. Structural optimization and antibacterial evaluation of rhodomyrtosone B analogues against MRSA strains. Medchemcomm. 2018;9:1698–707. https://doi.org/10.1039/c8md00257f.<br /> [55] McCauley J, Zivanovic A, Skropeta D. Bioassays for anticancer activities. Methods Mol Biol. 2013;1055:191–205. https://doi.org/10.1007/978-1-62703-577-4_14. |
[1] | Wei-Ye Wu, Xun Wei, Qiong Liao, Yi-Fan Fu, Lei-Ming Wu, Lei Li, Shu-Qi Wu, Qing-Ren Lu, Fang-Yu Yuan, Dong Huang, Zhang-Hua Sun, Tao Yuan, Gui-Hua Tang. Structurally diverse polyketides and alkaloids produced by a plant-derived fungus Penicillium canescens L1 [J]. Natural Products and Bioprospecting, 2025, 15(3): 22-22. |
[2] | Yuwei Wu, Baihui Zhang, Wenxian Li, Lihua Peng, Weilin Qiao, Wei Li, De-an Guo. Asprecosides A-J, ten new pentacyclic triterpenoid glycosides with cytotoxic activity from the roots of Ilex asprella [J]. Natural Products and Bioprospecting, 2025, 15(2): 18-18. |
[3] | Olusesan Ojo, Idris Njanje, Dele Abdissa, Tarryn Swart, Roxanne L. Higgitt, Rosemary A. Dorrington. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials [J]. Natural Products and Bioprospecting, 2025, 15(2): 19-19. |
[4] | Phanruethai Pailee, Paratchata Batsomboon, Wiriya Yaosanit, Theerawat Thananthaisong, Chulabhorn Mahidol, Poonsakdi Ploypradith, Nanthawan Reuk-ngam, Panita Khlaychan, Supanna Techasakul, Somsak Ruchirawat, Vilailak Prachyawarakorn. Grewiifopenes A-K, bioactive clerodane diterpenoids from Casearia grewiifolia Vent. [J]. Natural Products and Bioprospecting, 2024, 14(6): 54-54. |
[5] | Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling [J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30. |
[6] | Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond [J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5. |
[7] | Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites [J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40. |
[8] | Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola [J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28. |
[9] | Hao-Yi Li, Bing-Chao Yan, Li-Xin Wei, Han-Dong Sun, Pema-Tenzin Puno. Tangutidines A-C, Three Amphoteric Diterpene Alkaloids from Aconitum tanguticum [J]. Natural Products and Bioprospecting, 2021, 11(4): 459-464. |
[10] | Qing-Yun Lu, Jia-Hui Zhang, Ying-Yao Li, Xue-Xue Pu, Cui-Shan Zhang, Shuai Liu, Jia-Jia Wan, Ying-Tong Di, Xiao-Jiang Hao. New Secodaphnane-Type Alkaloids with Cytotoxic Activities from Daphniphyllum angustifolium Hutch [J]. Natural Products and Bioprospecting, 2021, 11(4): 453-457. |
[11] | Ke Ye, Hong-Lian Ai, Ji-Kai Liu. Identification and Bioactivities of Secondary Metabolites Derived from Endophytic Fungi Isolated from Ethnomedicinal Plants of Tujia in Hubei Province: A Review [J]. Natural Products and Bioprospecting, 2021, 11(2): 185-205. |
[12] | Jing Lu, Xing-Rong Peng, Da-Shan Li, Qiang-Qiang Shi, Ming-Hua Qiu. Cytotoxic Cycloartane Triterpenoid Saponins from the Rhizomes of Cimicifuga foetida [J]. Natural Products and Bioprospecting, 2019, 9(4): 303-310. |
[13] | Yuan-Liang Ma, Xiao-Han Tang, Wen-Juan Yuan, Xiao Ding, Ying-Tong Di, Xiao-Jiang Hao. Abietane Diterpernoids from the Roots of Euphorbia ebracteolata [J]. Natural Products and Bioprospecting, 2018, 8(2): 131-135. |
[14] | Rong Chen, Jian-Wei Tang, Xing-Ren Li, Miao Liu, Wen-Ping Ding, Yuan-Fei Zhou, Wei-Guang Wang, Xue Du, Han-Dong Sun, Pema-Tenzin Puno. Secondary Metabolites from the Endophytic Fungus Xylaria sp. Hg1009 [J]. Natural Products and Bioprospecting, 2018, 8(2): 121-129. |
[15] | Ce Kuang, Shu-Xi Jing, Yan Liu, Shi-Hong Luo, Sheng-Hong Li. Drimane Sesquiterpenoids and Isochromone Derivative from the Endophytic Fungus Pestalotiopsis sp. M-23 [J]. Natural Products and Bioprospecting, 2016, 6(3): 155-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||