2025年集群网站期刊最受关注文章TOP10 本专辑筛选整合生物学期刊集群网站英文期刊点击量排行前10,中文期刊下载量排行前10的文章,组建为2025年集群网站最受关注的文章合集
病原体侵染严重威胁植物的正常生长发育, 是造成作物减产的主要因素之一。植物免疫系统在植物抵抗病原体侵染中发挥核心作用。自2006年提出植物免疫系统主要由模式触发的免疫(PTI)和效应子触发的免疫(ETI)两层防御体系组成以来, 大量的研究工作聚焦于解析PTI和ETI中的关键受体/共受体、PTI和ETI信号通路的组分及其作用机制、植物免疫激素水杨酸和茉莉素的合成与信号转导, 逐步形成了以病原体识别、活性氧爆发、Ca2+内流、MAPK级联信号转导及下游防御基因诱导表达为核心的复杂免疫调控网络。近年的研究表明, 植物免疫相关基因的表达不仅受到转录调控, 其mRNA的稳定性、翻译效率和翻译产物也受到多种转录后调控机制的影响, 包括可变剪接、m6A修饰、小RNA、uORF和R-motif。该文概述了植物免疫系统的组成和主要的调控通路及其组分, 详述了转录后调控对植物免疫的影响及病原体对相关调控作用的干扰机制, 梳理了转录后调控元件在作物中的应用, 为保障粮食安全、提高作物抗病性以及分子育种元件筛选提供参考。
近年来, 植物抗病免疫研究取得了突破性进展, 包括病原识别、免疫信号转导及植物-病原-介体-环境互作等。这些研究不仅增强了我们对植物抗病免疫的理解, 还为分子育种和分子遗传学研究奠定了坚实的基础。近期, 国内多家单位相继在植物免疫机制研究中取得了令人振奋的新突破, 从植物应对病原的识别机制、次级代谢产物参与植物抗病反应过程、 禾本科作物的抗病模块和基于人工智能的抗病小肽设计等不同层面对植物免疫反应的分子机制进行了深入解析。随着CRISPR/Cas9基因编辑技术和人工智能的快速发展, 这些研究成果将有助于创制具有抗病特性的新种质, 从而加速抗病作物新品种的培育过程, 对于抗病生物育种和国家粮食安全具有重要意义。
叶色突变体是研究光形态发生、叶绿体发育、叶绿素代谢和光合作用机制等多种生理过程的理想材料。该研究从黄瓜(Cucumis sativus) XYYH-2-1-1株系自交后代中获得1个新的黄化致死突变体ycl (yellow cotyledon lethal)。该突变体自幼苗出土后子叶一直呈黄化状态, 约2周后枯萎死亡, 其生长抑制表型为非光依赖型。与野生型相比, ycl突变体的Chl a和Chl b含量趋于零, 叶绿素生物合成途径中Mg2+螯合过程受阻。显微和超微结构分析发现, ycl叶片组织紊乱、叶绿体发育受阻。ycl的抗氧化酶活性及丙二醛含量显著升高, 说明其受到氧化胁迫, 且抗氧化能力强。ycl净光合速率极显著降低, 胞间CO2浓度上升, 推测ycl光合速率降低源于气孔导度降低、叶绿素含量减少和叶绿体发育受阻。转录组学分析表明, ycl与其野生型间存在337个差异表达基因, 光合作用、类黄酮生物合成、叶绿素代谢和活性氧代谢是导致ycl黄化致死表型形成的关键途径。通过BSA-Seq分析, ycl突变基因初步定位于3号染色体的1.48-1.9 Mb区间, 内含41个候选基因。对ycl突变体的研究为阐明黄瓜叶绿体发育的分子机制提供了参考。
丛枝菌根(AM)真菌与菌丝际细菌互作在植物从土壤中活化及吸收磷的过程中发挥着关键作用。该文系统阐述了AM真菌-细菌互作对土壤磷循环的影响及其调控机制。AM真菌菌丝分泌物中的糖类、羧酸盐和氨基酸等物质为细菌提供碳源并特异性招募解磷细菌,菌丝还能作为“移动桥梁”促进细菌迁移。在群落水平上,AM真菌能够调控菌丝际细菌的结构和功能,富集含有磷酸酶基因(如phoD)的功能细菌,提高磷酸酶活性,促进有机磷矿化。基于上述机制,通过调控土壤碳磷摩尔比、添加菌丝分泌物成分等策略可以发挥AM真菌-细菌互作的生物学潜力,提高土壤磷利用效率。
深色有隔内生菌(dark septate endophytes,DSEs)是植物根系真菌组(mycobiome)的重要成员,通常在皮层细胞形成微菌核结构,在促进植物生长、养分吸收及提高胁迫适应性方面发挥着与菌根真菌同等重要的作用,甚至在某些极端环境下其丰度比菌根真菌更高。该文概述了DSEs的物种多样性、基础生物学特性和生理生态功能。在此基础上,重点评述了近年来在共生机理、DSEs基因组结构和种群适应性演化特征等方面的研究进展,旨在为后期深入揭示DSEs新的适应机制、协同植物抗逆机制及开发新型高效DSEs菌剂应用于土壤生态修复和抗逆农林业良种高效培育等提供参考。
丛枝菌根真菌(AMF)是土壤生态系统中关键的微生物群落之一,研究其繁殖技术及应用对于提升农业生产效率与实现农业可持续性具有深远意义。该文综述了AMF的共生机制及其在扩繁体系和菌剂应用方面的最新研究进展。探讨了AMF与植物根系建立共生关系的分子机制;分析了AMF扩繁体系的优化策略,包括无菌培养技术、基质选择和环境控制等关键因素;讨论了AMF菌剂在实际生产中的应用潜力,包括提高作物产量、增强植物抗逆性和改善土壤结构等,并阐述了当前AMF应用领域存在的实际问题与今后的研究方向。该项研究旨在为进一步理解丛枝菌根真菌的重要性提供参考,并为未来新型微生物菌剂的开发及其在农业生态系统中的应用奠定基础。
核桃(Juglans)作为世界重要的经济林木,其生长发育与丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)之间密切关联。核桃根际AMF资源丰富,涵盖了10个属多个种,其多样性受种植模式(如套种)、土壤养分等影响,但深根性特征使核桃成为周围植被AMF繁殖体的储存库,并通过普通菌根网络实现了养分(如磷和碳)的有效再分配。该研究明确了AMF在促进核桃生长、提高成活率、促进养分(特别是磷)吸收,以及增强抗旱性方面的作用机制,并探究了AMF在提高和转移胡桃醌上的潜力。最后,对核桃菌根研究的未来发展方向进行了展望。
三维重建技术(3D reconstruction)是利用计算机图形学和图像处理技术, 从二维图像数据中提取目标物体的几何和拓扑信息, 构建计算机可处理的三维数学模型, 从而实现物体的虚拟重建。在植物学研究中, 三维模型的构建已成为研究植物生长发育、形态结构和功能机制的有效手段, 为多尺度成像、测量和分析提供了有力支撑, 并在农业和林业领域展现出巨大的应用潜力。近年来, 随着植物三维重建技术的不断完善, 其在植物学研究中衍生出不同的应用方向, 涵盖植物形态结构建模、生长发育动态监测以及植物育种等多方面。该文综述了三维重建技术的发展历程及常见的三维重建成像技术在植物不同尺度(从器官、组织到细胞)研究中的应用, 重点阐述这些技术的基本原理及应用, 旨在为植物多模态跨尺度成像以及表型与功能研究提供理论和技术支撑, 为揭示植物生长发育规律及响应环境变化的机制提供新途径。
香气是吸引消费者购买果实的重要因素之一,光对果实香气的形成具有重要作用。该文综述了光对果实香气品质的影响,具体分析了光质、光强、光周期对果实香气品质的调控机制,以及光与其他因素(温度、水分、CO2浓度和植物激素)相互作用对果实香气品质形成的影响。最后,提出光对果实香气品质影响的研究展望,以期为果实香气品质的研究和改良提供参考。