植物研究 ›› 2025, Vol. 45 ›› Issue (5): 816-826.doi: 10.7525/j.issn.1673-5102.2025.05.015
王芳1, 杨叶磊2, 苑长华3, 王君1, 魏伟4, 吴琳4, 李奎友4, 李奎全4, 陆志民1, 王元兴1, 杨雨春1()
收稿日期:
2024-11-20
出版日期:
2025-09-20
发布日期:
2025-09-28
通讯作者:
杨雨春
E-mail:yang-yu-chun@163.com
作者简介:
王芳(1988—),女,高级工程师,博士,主要从事林木遗传育种研究。
基金资助:
Fang WANG1, Yelei YANG2, Changhua YUAN3, Jun WANG1, Wei WEI4, Lin WU4, Kuiyou LI4, Kuiquan LI4, Zhimin LU1, Yuanxing WANG1, Yuchun YANG1()
Received:
2024-11-20
Online:
2025-09-20
Published:
2025-09-28
Contact:
Yuchun YANG
E-mail:yang-yu-chun@163.com
摘要:
为筛选优良红松(Pinus koraiensis)种质资源,为国家储备林建设和红松造林推广提供材料,以吉林森工露水河林业有限公司初级红松种子园中优良个体的子代为材料,对19年生218个红松优树半同胞家系的树高、胸径、材积进行方差分析、遗传参数估算、一般配合力分析、相关分析和综合评价,筛选优良家系,并在优良家系中筛选优良单株。结果显示:不同家系、区组及家系×区组间的树高、胸径、材积均具有极显著差异(P<0.01);全部红松家系树高平均值为3.22 m,胸径平均值为4.79 cm,材积平均值为0.005 08 m3,各性状表型变异系数为25.42%~82.48%,家系遗传力为0.86~0.89,单株遗传力为0.23~0.38;家系PK20的树高、胸径、材积平均值均最大,且亲本的树高、胸径和材积一般配合力均最大,除PK20外,PK33、PK6和PK46亲本各性状的一般配合力均较大;树高、胸径与材积两两性状之间呈极显著正相关。利用多性状综合评价法筛选出10个优良家系(5%入选率),入选家系的树高、胸径和材积均值分别为3.85 m、6.50 cm和0.007 50 m3,遗传增益分别为17.30%、31.02%和65.08%,分别高出当地对照均值11.60%、23.81%和62.91%;以同样方法在优良家系中选出10个优良单株(2%入选率),入选单株的树高、胸径和材积均值分别为5.06 m、10.72 cm和0.023 99 m3,遗传增益分别为11.86%、17.31%和38.68%,分别高出当地对照均值46.67%、104.19%和420.83%。以生长性状作为选择目标,初选出的优良家系和优良单株可用于良种申报,为红松的遗传改良提供理论基础,同时为林业“双增”提供良种。配合力分析得到的优质亲本,可用于杂交育种产生遗传性较好的子代。
中图分类号:
王芳, 杨叶磊, 苑长华, 王君, 魏伟, 吴琳, 李奎友, 李奎全, 陆志民, 王元兴, 杨雨春. 红松优树子代生长变异分析及优良材料选择[J]. 植物研究, 2025, 45(5): 816-826.
Fang WANG, Yelei YANG, Changhua YUAN, Jun WANG, Wei WEI, Lin WU, Kuiyou LI, Kuiquan LI, Zhimin LU, Yuanxing WANG, Yuchun YANG. Variation Analysis of Growth Traits of Offspring and Superior Materials Selection of Pinus koraiensis[J]. Bulletin of Botanical Research, 2025, 45(5): 816-826.
表1
红松生长性状方差分析
性状 Traits | 变异来源 Variance source | 自由度 df | 均方 Mean square | F | P |
---|---|---|---|---|---|
树高 Tree height | 家系 Families | 217 | 3.791 | 9.154 | <0.01 |
区组 Blocks | 5 | 15.082 | 36.416 | <0.01 | |
家系×区组 Families×Blocks | 1 061 | 2.072 | 5.004 | <0.01 | |
胸径 Diameter at breast height | 家系 Families | 217 | 23.680 | 7.902 | <0.01 |
区组 Blocks | 5 | 210.864 | 70.363 | <0.01 | |
家系×区组 Families×Blocks | 1 061 | 12.585 | 4.199 | <0.01 | |
材积 Volume | 家系 Families | 217 | 0 | 7.187 | <0.01 |
区组 Blocks | 5 | 0.001 | 45.755 | <0.01 | |
家系×区组 Families×Blocks | 1 061 | 5.17×10-5 | 3.664 | <0.01 |
表3
红松生长性状平均值
家系 Families | 树高 Tree height/m | 家系 Families | 胸径 Diameter at breast height/cm | 家系 Families | 材积 Volume/m3 |
---|---|---|---|---|---|
PK20 | 4.38±0.55a | PK20 | 7.62±2.11a | PK20 | 0.012 31±0.007 18a |
PK98 | 4.20±0.67ab | PK6 | 6.85±2.19ab | PK6 | 0.009 79±0.005 75ab |
PK6 | 3.99±0.79ab | PK46 | 6.73±1.25ab | PK26 | 0.009 32±0.008 83ab |
PK46 | 3.97±0.41ab | PK26 | 6.64±2.51ab | PK64 | 0.009 13±0.007 19ab |
PK64 | 3.87±0.90ab | PK86 | 6.53±1.84ab | PK46 | 0.008 56±0.003 32ab |
PK71 | 3.80±0.97ab | PK3 | 6.43±1.95ab | PK71 | 0.008 42±0.007 09ab |
PK31 | 3.77±0.91ab | PK64 | 6.38±2.61ab | PK72 | 0.008 38±0.006 65ab |
PK69 | 3.77±0.73ab | PK29 | 6.30±0.96ab | PK3 | 0.008 09±0.004 69ab |
PK53 | 3.76±1.01ab | PK98 | 6.11±1.29ab | PK86 | 0.007 75±0.004 68ab |
PK17 | 3.66±0.97ab | PK97 | 6.08±2.32ab | PK97 | 0.007 57±0.007 83ab |
PK65 | 3.66±0.91b | PK66 | 6.08±1.75ab | PK17 | 0.007 57±0.007 46ab |
PK26 | 3.63±0.77b | PK31 | 6.01±2.04ab | PK53 | 0.007 55±0.006 59ab |
PK72 | 3.62±1.26b | PK71 | 5.95±2.93ab | PK31 | 0.007 48±0.005 14ab |
PK3 | 3.60±0.79b | PK5 | 5.78±2.38b | PK98 | 0.007 47±0.004 00ab |
PK57 | 3.59±1.06b | PK72 | 5.76±3.24b | PK5 | 0.007 19±0.005 67ab |
PK5 | 3.58±1.01b | PK17 | 5.72±2.64b | PK66 | 0.006 94±0.004 05ab |
PK66 | 3.57±0.42b | PK53 | 5.64±2.76b | PK15 | 0.006 92±0.006 36b |
PK10 | 3.56±1.05b | PK21 | 5.64±1.49b | PK57 | 0.006 80±0.007 06b |
PK91 | 3.55±0.86b | PK48 | 5.64±1.35b | PK60 | 0.006 65±0.005 08b |
PK48 | 3.54±0.44b | PK28 | 5.63±2.27b | PK28 | 0.006 58±0.006 06 |
表4
亲本不同生长性状的一般配合力
家系 Families | 树高 Tree height | 家系 Families | 胸径 Diameter at breast height | 家系 Families | 材积 Volume |
---|---|---|---|---|---|
PK20 | 1.16 | PK20 | 2.82 | PK20 | 0.007 23 |
PK98 | 0.97 | PK33 | -2.28 | PK6 | 0.004 71 |
PK43 | -0.89 | PK6 | 2.06 | PK26 | 0.004 24 |
PK33 | -0.88 | PK46 | 1.94 | PK64 | 0.004 05 |
PK6 | 0.77 | PK13 | -1.90 | PK33 | -0.003 76 |
PK46 | 0.74 | PK26 | 1.85 | PK46 | 0.003 48 |
PK13 | -0.69 | PK86 | 1.74 | PK71 | 0.003 34 |
PK64 | 0.65 | PK43 | -1.72 | PK16 | -0.003 32 |
PK23 | -0.64 | PK3 | 1.64 | PK72 | 0.003 30 |
PK16 | -0.64 | PK16 | -1.62 | PK30 | -0.003 27 |
PK83 | -0.64 | PK64 | 1.59 | PK23 | -0.003 22 |
PK84 | -0.61 | PK23 | -1.53 | PK13 | -0.003 11 |
PK71 | 0.58 | PK29 | 1.51 | PK3 | 0.003 01 |
PK30 | -0.56 | PK88 | -1.46 | PK94 | -0.002 76 |
PK39 | -0.55 | PK30 | -1.46 | PK86 | 0.002 67 |
PK69 | 0.55 | PK94 | -1.40 | PK45 | -0.002 60 |
PK31 | 0.54 | PK84 | -1.36 | PK56 | -0.002 54 |
PK53 | 0.53 | PK45 | -1.36 | PK17 | 0.002 49 |
PK88 | -0.50 | PK2 | -1.34 | PK84 | -0.002 49 |
PK65 | 0.44 | PK98 | 1.32 | PK97 | 0.002 49 |
表6
各家系生长性状综合评价
家系 Families | 综合评价值 Qi | 家系 Families | 综合评价值 Qi | 单株 Individuals | 综合评价值 Qi | 单株 Individuals | 综合评价值 Qi |
---|---|---|---|---|---|---|---|
PK20 | 1.732 1 | PK31 | 1.502 5 | PK26-2-1 | 1.709 9 | PK20-4-7 | 1.543 9 |
PK6 | 1.614 3 | PK53 | 1.487 6 | PK26-1-7 | 1.709 8 | PK20-5-3 | 1.542 1 |
PK46 | 1.576 2 | PK17 | 1.483 7 | PK20-2-3 | 1.650 2 | PK64-5-10 | 1.507 6 |
PK64 | 1.570 1 | PK97 | 1.481 2 | PK26-2-6 | 1.606 7 | PK64-3-6 | 1.507 3 |
PK26 | 1.567 3 | PK66 | 1.475 6 | PK26-1-10 | 1.606 5 | PK64-3-8 | 1.506 5 |
PK98 | 1.538 4 | PK5 | 1.470 2 | PK20-2-5 | 1.572 2 | PK71-3-2 | 1.538 8 |
PK71 | 1.527 3 | PK29 | 1.450 3 | PK64-5-1 | 1.552 7 | PK6-3-1 | 1.532 8 |
PK3 | 1.524 5 | PK69 | 1.438 4 | PK64-1-6 | 1.551 0 | PK20-1-3 | 1.531 9 |
PK86 | 1.508 3 | PK65 | 1.436 3 | PK64-3-10 | 1.549 0 | PK20-2-6 | 1.508 8 |
PK72 | 1.504 4 | PK37 | 1.483 6 | PK20-1-2 | 1.545 0 | PK72-5-6 | 1.492 8 |
表7
优良家系和优良单株生长性状遗传增益
性状 Traits | 优良家系 Superior families | 优良单株 Superior individuals | ||||||
---|---|---|---|---|---|---|---|---|
均值 Means | 遗传增益 Genetic gain/% | 对照均值 Means of CK | 超出对照 Percentage out of CK/% | 均值 Means | 遗传增益 Genetic gain/% | 对照均值 Means of CK | 超出对照 Percentage out of CK/% | |
树高 Tree height/m | 3.85 | 17.30 | 3.45 | 11.60 | 5.06 | 11.86 | 3.45 | 46.67 |
胸径 Diameter at breast height/cm | 6.50 | 31.02 | 5.25 | 23.81 | 10.72 | 17.31 | 5.25 | 104.19 |
材积 Volume/m3 | 0.007 50 | 65.08 | 0.004 61 | 62.91 | 0.023 99 | 38.68 | 0.004 61 | 420.83 |
[1] | 张志翔.树木学:北方本[M].2版.北京:中国林业出版社,2008. |
ZHANG Z X.Dendrology:northern edition[M].2nd Ed.Beijing:China Forestry Press,2008. | |
[2] | YANG J, CHOI W S, KIM K J,et al.Investigation of active anti-inflammatory constituents of essential oil from Pinus koraiensis (Sieb.et Zucc.) wood in LPS-stimulated RBL-2H3 cells[J].Biomolecules,2021,11(6):817. |
[3] | 王贺.10个品系红松仁油成分、性质分析及指纹图谱构建[D].哈尔滨:东北林业大学,2021. |
WANG H.Composition,characteristic analysis,and fingerprints construction of 10 pine seed oils[D].Harbin:Northeast Forestry University,2021. | |
[4] | 马晓雨,尚福强,潘丕克,等.不同种源红松生长、结实及光合生理特征[J].中南林业科技大学学报,2023,43(1):57-65. |
MA X Y, SHANG F Q, PAN P K,et al.The growth,fruiting and photosynthetic physiology characteristics of Pinus koraiensis from different provenances[J].Journal of Central South University of Forestry & Technology,2023,43(1):57-65. | |
[5] | 尚福强,高源,马晓雨,等.不同种源红松生长性状和种实性状变异分析与评价选择[J].种子,2024,43(10):74-84. |
SHANG F Q, GAO Y, MA X Y,et al.Variation analysis and evaluation selection of growth and seed traits of Pinus koraiensis from different provenances[J].Seed,2024,43(10):74-84. | |
[6] | 杨圆圆,张金博,徐广金,等.红松无性系结实性状变异及选择[J].种子,2023,42(12):1-8. |
YANG Y Y, ZHANG J B, XU G J,et al.Variation and selection of fruit traits of Pinus koraiensis clones[J].Seed,2023,42(12):1-8. | |
[7] | 周雪燕,高海燕,李召珉,等.基于生长与结实评价红松种子园亲本[J].植物研究,2020,40(3):376-385. |
ZHOU X Y, GAO H Y, LI Z M,et al.Evaluating parents of Pinus koraiensis seeds orchard with growth and fruiting[J].Bulletin of Botanical Research,2020,40(3):376-385. | |
[8] | 蒋路平,王景源,张鹏,等.170个红松无性系生长及结实性状变异及选择[J].林业科学研究,2019,32(1):58-64. |
JIANG L P, WANG J Y, ZHANG P,et al.Variation and selection of growth and fruit traits among 170 Pinus koraiensis clones[J].Forest Research,2019,32(1):58-64. | |
[9] | 韩龙海,潘凤刚,刘洪志,等.红松种实性状变异及无性系选择[J].北华大学学报(自然科学版),2021,22(2):176-181. |
HAN L H, PAN F G, LIU H Z,et al.Variation of cone-and-seed traits and clonal selection of Pinus koraiensis [J].Journal of Beihua University(Natural Science),2021,22(2):176-181. | |
[10] | 王芳,王元兴,王成录,等.红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征[J].应用生态学报,2019,30(5):1679-1686. |
WANG F, WANG Y X, WANG C L,et al.Variation of the growth,fruiting and resistance to disease and insect of the half-sib families of Pinus koraiensis superior trees[J].Chinese Journal of Applied Ecology,2019,30(5):1679-1686. | |
[11] | 姜国云,蒋路平,宋双林,等.红松半同胞家系遗传变异分析及果材兼用优良家系选择[J].植物研究,2018,38(5):775-784. |
JANG G Y, JIANG L P, SONG S L,et al.Genetic variance analysis and excellent fruit-timber families selection of half-sib Pinus koraiensis [J].Bulletin of Botanical Research,2018,38(5):775-784. | |
[12] | TUAN N T,沈海龙,张金虎,等.红松杈干类型与林分密度、个体生长指标及丰年株均结实量的关系[J].生态学杂志,2017,36(4):925-934. |
TUAN N T, SHEN H L, ZHANG J H,et al.Relationships between multi-stem type and stand density,tree growth index and mast year cone yield in Pinus koraiensis plantation[J].Chinese Journal of Ecology,2017,36(4):925-934. | |
[13] | 张海涛,薛长坤,李艳飞,等.利用杈干原理促进红松结实技术的应用[J].林业科技通讯,2000(8):33. |
ZHANG H T, XUE C K, LI Y F,et al.The principle of bifurcation was used to promote the application of fruiting technology of Pinus koraiensis [J].Forest Science and Technology,2000(8):33. | |
[14] | 王芳,陆志民,王君,等.不同疏伐密度对红松结实量的影响[J].吉林林业科技,2023,52(3):1-4. |
WANG F, LU Z M, WANG J,et al.Effects of different thinning densities on cone quantity of Pinus koraiensis [J].Journal of Jilin Forestry Science and Technology,2023,52(3):1-4. | |
[15] | 张金虎.红松人工林结实的密度效应及其周期结实模型的建立[D].哈尔滨:东北林业大学,2016. |
ZHANG J H.The effects of stand density on cone yield and establishment of period cone yield model for Korean pine plantation[D].Harbin:Northeast Forestry University,2016. | |
[16] | 刘殿辉,韩瑞龙,薛添钰,等.外源GA4/7对红松提早结实的影响[J].防护林科技,2024(6):52-55. |
LIU D H, HAN R L, XUE T Y,et al.Effects of exogenous GA4/7 on early fruiting of Pinus koraiensis [J].Protection Forest Science and Technology,2024(6):52-55. | |
[17] | 谷健.不同结实特性红松花芽分化期间光合营养生理[D].哈尔滨:东北林业大学,2022. |
GU J. Photosynthetic and nutrition physiology of Korean pine with different fruit characteristics during flower bud differentiation[D].Harbin:Northeast Forestry University,2022. | |
[18] | 殷东生,张建瑛,魏晓慧.红松当年生枝条的性状特征与结实的相关性[J].东北林业大学学报,2019,47(9):6-9. |
YIN D S, ZHANG J Y, WEI X H.Relationships between cones bearing and traits of current-year branch of Pinus koraiensis [J].Journal of Northeast Forestry University,2019,47(9):6-9. | |
[19] | 林强,陆天宇,沈海龙,等.长期结实和不结实红松针叶光合生理参数的差异[J].南京林业大学学报(自然科学版),2023,47(3):137-146. |
LIN Q, LU T Y, SHEN H L,et al.Analysis of needle photosynthetic index characteristics for long period seed setting and non-setting trees of Pinus koraiensis [J].Nanjing Forestry University (Natural Sciences Edition),2023,47(3):137-146. | |
[20] | 殷东生,张建瑛.红松结实大年和小年枝叶中碳氮磷质量分数的差异[J].东北林业大学学报,2024,52(9):53-57. |
YIN D S, ZHANG J Y.The differential carbon,nitrogen,and phosphorus mass fractions in on and off year branches and leaves of Pinus koraiensis fruiting[J].Journal of Northeast Forestry University,2024,52(9):53-57. | |
[21] | WU H B, ZHANG J Y, RODRÍGUEZ-CALCERRADA J,et al.Large investment of stored nitrogen and phosphorus in female cones is consistent with infrequent reproduction events of Pinus koraiensis,a high value woody oil crop in Northeast Asia[J].Frontiers in Plant Science,2023,13:1084043. |
[22] | 贾庆斌,刘庚,赵佳丽,等.红松半同胞家系生长性状变异分析与优良家系选择[J].南京林业大学学报(自然科学版),2022,46(4):109-116. |
JIA Q B, LIU G, ZHAO J L,et al.Variation analyses of growth traits in half-sib families of Korean pine and superior families selection[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2022,46(4):109-116. | |
[23] | 李岩,朱嘉瑶,王喜和,等.红松优树无性系及其子代的生长评价与选择研究[J].北京林业大学学报,2021,43(10):38-46. |
LI Y, ZHU J Y, WANG X H,et al.Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis [J].Journal of Beijing Forestry University,2021,43(10):38-46. | |
[24] | 张秦徽,王洪武,姜国云,等.红松半同胞家系变异分析及选择研究[J].植物研究,2019,39(4):557-567. |
ZHANG Q H, WANG H W, JIANG G Y,et al.Variation analysis and selection of Pinus koraiensis half-sib families[J].Bulletin of Botanical Research,2019,39(4):557-567. | |
[25] | 黄桂华,梁坤南,付强,等.11年生柚木无性系遗传变异与优良无性系选择[J].东北林业大学学报,2023,51(8):18-22. |
HUANG G H, LIANG K N, FU Q,et al.Genetic variation and superior clone selection of 11-year-old Tectona grandis clones[J].Journal of Northeast Forestry University,2023,51(8):18-22. | |
[26] | 徐永宏,杨孟晴,代丽华,等.小叶青冈幼林生长和形质性状家系变异与选择[J].西部林业科学,2023, 52(6):1-7. |
XU Y H, YANG M Q, DAI L H,et al.Variation and selection of growth and form-quality traits of young Cyclobalanopsis myrsinifolia forest[J].Journal of West China Forestry Science,2023,52(6):1-7. | |
[27] | 沈汉,郑成忠,邱勇斌,等.10年生香椿生长与形质性状的种源变异及选择[J].浙江农林大学学报,2024,41(3):597-605. |
SHEN H, ZHENG C Z, QIU Y B,et al.Provenance variation and selection in growth,shape,and quality traits of 10-year-old Toona sinensis [J].Journal of Zhejiang A&F University,2024,41(3):597-605. | |
[28] | 张振,张含国,张磊.红松自由授粉子代家系生产力年度变异与家系选择[J].植物研究,2016,36(2):305-309. |
ZHANG Z, ZHANG H G, ZHANG L.Age variations in productivity and family selection of open-pollinated families of Korean pine (Pinus koraiensis)[J].Bulletin of Botanical Research,2016,36(2):305-309. | |
[29] | WANG F, ZHANG Q H, TIAN Y G,et al.Comprehensive assessment of growth traits and wood properties in half-sib Pinus koraiensis families[J].Euphytica,2018,214(11):202. |
[30] | 陈晓阳,沈熙环.林木育种学[M].北京:高等教育出版社,2005. |
CHEN X Y, SHEN X H.Tree breeding science[M].Beijing:Higher Education Press,2005. | |
[31] | AHMED A K M, JIANG L P, WANG F,et al.Variation analysis of growth traits of four poplar clones under different water and fertilizer management[J].Journal of Forestry Research,2020,31(1):45-55. |
[32] | PERSSON T, ANDERSSON B.Genetic variance and covariance patterns of growth and survival in Northern Pinus sylvestris [J].Scandinavian Journal of Forest Research,2003,18(4):332-343. |
[33] | PALLE S R, SEEVE C M, ECKERT A J,et al.Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda L.)[J].Tree Genetics & Genomes,2011,7(1):193-206. |
[34] | 孙佰飞,张磊,张含国,等.红松半同胞家系生长性状遗传评估及优良家系选择[J].东北林业大学学报,2023,51(6):1-5. |
SUN B F, ZHANG L, ZHANG H G,et al.Genetic evaluation of growth traits in Pinus koraiensis half-sib families and selection of elite families[J].Journal of Northeast Forestry University,2023,51(6):1-5. | |
[35] | 左一凡,刘青华,曹森,等.3地点马尾松生长与产脂性状家系变异及稳定性研究[J].林业科学研究,2024,37(5):46-53. |
ZUO Y F, LIU Q H, CAO S,et al.Family variation and stability of growth and oleoresin traits of Pinus massoniana in three sites[J].Forest Research,2024,37(5):46-53. | |
[36] | METOUGUI M L, MOKHTARI M, MAUGHAN P J,et al.Morphological variability,heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ [J].International Journal of Agriculture and Forestry,2017,7(2):42-51. |
[37] | 尚福强,高源,马晓雨,等.红松优树半同胞家系的遗传变异及优良家系和单株选择[J].东北林业大学学报,2024,52(10):1-6. |
SHANG F Q, GAO Y, MA X Y,et al.Genetic variation of half-sib families of superior Pinus koraiensis trees and selection of superior families and individuals[J].Journal of Northeast Forestry University,2024,52(10):1-6. | |
[38] | 李自敬,李雪峰,张含国,等.长白落叶松优良家系选择的研究[J].林业科技,2008,33(4):1-4. |
LI Z J, LI X F, ZHANG H G,et al.Study on selection of superior families of Larix olgensis [J].Forestry Science & Technology,2008,33(4):1-4. | |
[39] | 程琳,戴俊,罗启亮,等.14个杉木家系主要用材性状表型多样性分析与评价[J].热带亚热带植物学报,2022,30(6):874-883. |
CHENG L, DAI J, LUO Q L,et al.Phenotypic diversity analysis and evaluation of main timber traits in 14 families of Chinese fir[J].Journal of Tropical and Subtropical Botany,2022,30(6):874-883. | |
[40] | 孙晓梅,张守攻,董雷鸣.日本落叶松全双列交配生长性状的遗传分析[J].林业科学研究,2019,32 (4):11-18. |
SUN X M, ZHANG S G, DONG L M.Genetic analysis of Larix kaempferi growth traits in full-diallel crosses[J].Forest Research,2019,32(4):11-18. | |
[41] | 苏顺德,黄德龙,魏永平,等.马尾松自由授粉家系产脂力遗传变异及选择[J].福建林业科技,2017,44(2):1-6. |
SU S D, HUANG D L, WEI Y P,et al.Genetic variation and selection of the resin-yielding capacity of open-pollinated families of masson pine[J].Journal of Fujian Forestry Science and Technology,2017,44(2):1-6. | |
[42] | 黄寿先,周传明,朱栗琼,等.杉木半同胞家系生长和材性遗传变异研究[J].广西植物,2004,24(6):535-539. |
HUANG S X, ZHOU C M, ZHU L Q,et al.Study on the genetic variation of growth traits and wood properties for Chinese fir half-sib families[J].Guihaia,2004,24(6):535-539. | |
[43] | 马娟,朱卫红,刘京宝,等.玉米穗长一般配合力多位点全基因组关联分析和预测[J].作物学报,2023,49(6):1562-1572. |
MA J, ZHU W H, LIU J B,et al.Multi-locus genome-wide association study and prediction for general combining ability of maize ear length[J].Acta Agronomica Sinica,2023,49(6):1562-1572. | |
[44] | 牛慧敏,张振,邱勇斌,等.杉木高世代杂交子代生长与木材性状遗传分析[J].森林与环境学报,2024,44(2):120-126. |
NIU H M, ZHANG Z, QIU Y B,et al.Genetic analysis of growth and wood character of advanced generation hybrid offspring of Chinese fir[J].Journal of Forest and Environment,2024,44(2):120-126. | |
[45] | 董琳琳,张国成,刘立辉,等.白桦四倍体与二倍体杂交的亲本配合力分析[J].林业科学,2023,59(9):75-84. |
DONG L L, ZHANG G C, LIU L H,et al.Parental combining ability for growth and wood property of hybrids between tetraploid and diploid Betula platyphylla [J].Scientia Silvae Sinicae,2023,59(9):75-84. | |
[46] | 赖佳,韦树谷,黄玲,等.不结球白菜主要营养品质性状的配合力分析[J].北方园艺,2021,10(5):1-7. |
LAI J, WEI S G, HUANG L,et al.Combining ability analysis of main nutritional quality traits in non-heading Chinese cabbage[J].Northern Horticulture,2021,10(5):1-7. | |
[47] | 邱妍,翁启杰,李梅,等.尾叶桉×细叶桉多年生生长及其与材性相关的遗传分析[J].林业科学研究,2022,35(4):1-8. |
QIU Y, WENG Q J, LI M,et al.Genetic analysis on multiple-year growth traits and their correlations with wood properties in Eucalyptus urophylla × E.tereticornis crosses[J].Forest Research,2022,35(4):1-8. | |
[48] | 欧阳磊.柳杉种子园半同胞子代两点测定与选择[J].中南林业大学学报,2023,43(3):21-31. |
OUYANG L.Test and selection of the half-sib progenies in the Cryptomeria fortunei seed orchards at two sites[J].Journal of Central South University of Forestry & Technology,2023,43(3):21-31. | |
[49] | 洪舟,杨曾奖,张宁南,等.越南黄花梨种源家系生长遗传变异及早期选择[J].南京林业大学学报(自然科学版),2020,44(1):25-30. |
HONG Z, YANG Z J, ZHANG N N,et al.Genetic variation and juvenile selection of growth traits of Dalbergia tonkinensis Prain[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2020,44(1):25-30. |
[1] | 段文标, 王郅臻, 高嘉怡, 陈立新, 付琰芮. 小兴安岭不同演替阶段森林地上凋落物碳密度及碳氮磷计量特征[J]. 植物研究, 2025, 45(5): 769-782. |
[2] | 潘艳艳, 李晓光, 刘立君, 李鸿, 钟鑫, 张义飞. 红松生长和根际土壤酶活性对紫丁香蘑菌剂接种的响应[J]. 植物研究, 2025, 45(3): 460-470. |
[3] | 郭文慧, 王越, 吴琳, 杨剑飞, 杨玲, 张鹏, 吴海波, 沈海龙. 外源黄酮对红松胚性愈伤组织增殖和体胚发生的影响[J]. 植物研究, 2025, 45(1): 130-138. |
[4] | 栾宜通, 李念森, 乔璐靖, 琚存勇, 蔡体久, 孙佩丽. 云冷杉红松林优势树种生态位、种间联结及群落稳定性[J]. 植物研究, 2024, 44(5): 753-762. |
[5] | 靳旭红, 于聪, 张庭耀, 吕松瞳, 刘扬, 陈乐, 龙生, 穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选[J]. 植物研究, 2024, 44(5): 763-773. |
[6] | 王雪来, 刘晓婷, 王力冉, 李诗童, 张太进, 张嘉峰, 许经华, 曲冠证, 赵曦阳. 生长和木材性状耦合评价红松半同胞家系[J]. 植物研究, 2024, 44(4): 554-564. |
[7] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[8] | 任毓辉, 聂帅, 彭春雪, 杨玲, 沈海龙. 红松胚性愈伤组织增殖的激素配比、糖源类型和增殖周期效应研究[J]. 植物研究, 2022, 42(4): 704-712. |
[9] | 魏志刚, 夏德安, 王瑞琪, 张洋, 刘莹莹, 李若林, 杨传平. 小兴安岭天然次生林不同林型下红松种源试验[J]. 植物研究, 2021, 41(5): 807-815. |
[10] | 王芳, 陆志民, 王君, 张世凯, 李峪曦, 李绍臣, 张建秋, 杨雨春. 低温胁迫下红松与西伯利亚红松光合与气孔特性[J]. 植物研究, 2021, 41(2): 205-212. |
[11] | 周雪燕, 高海燕, 李召珉, 赵银琨, 葛丽丽, 侯庆文, 丁文雅, 赵曦阳. 基于生长与结实评价红松种子园亲本[J]. 植物研究, 2020, 40(3): 376-385. |
[12] | 李翔, 范作义, 王井源, 王淇, 李喜鹏, 王德秋, 孔令远, 曹森林, 孟庆刚, 赵曦阳. 红松查尔酮合成酶基因CHS密码子偏好性分析[J]. 植物研究, 2020, 40(3): 447-457. |
[13] | 祖述冲. β-环糊精包合红松籽油的制备工艺及生物利用度评价[J]. 植物研究, 2020, 40(2): 314-320. |
[14] | 林琳, 高宇婷, 程福山, 辛本花, 王贵春, 夏富才, 穆怀志. 赛黑桦不同半同胞家系种子活力比较[J]. 植物研究, 2020, 40(1): 125-132. |
[15] | 张秦徽, 王洪武, 姜国云, 沈光, 王连奎, 李焱龙, 王雷, 王立祥, 李月季, 李蕊, 赵曦阳. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4): 557-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||