植物研究 ›› 2025, Vol. 45 ›› Issue (5): 722-730.doi: 10.7525/j.issn.1673-5102.2025.05.007
收稿日期:
2025-04-30
出版日期:
2025-09-20
发布日期:
2025-09-28
通讯作者:
刘畅
E-mail:changliu0110@163.com
作者简介:
刘上(2000—),男,硕士研究生,主要从事林木遗传育种研究。
基金资助:
Shang LIU, Jinhua WANG, Hasi YU, Chang LIU()
Received:
2025-04-30
Online:
2025-09-20
Published:
2025-09-28
Contact:
Chang LIU
E-mail:changliu0110@163.com
摘要:
在气候变化和耕地资源日益紧张背景下,提升林木抗旱性成为重要育种目标。然而,抗旱性改良不应以牺牲生物量积累为代价。该研究在84K杨(Populus alba×P. glandulosa ‘84K’)中构建了组成型过表达PagPYL4基因株系,系统分析其在气孔调控、光合效率、生长性状及干旱响应方面的综合表现。结果表明,在外源ABA影响下,过表达PagPYL4基因使植株气孔开度变化显著。短期干旱处理下,相较于野生型,过表达PagPYL4基因能够减少水分散失,提升耐旱性;但抑制气孔导度和光合速率,造成株高与地径增长速率显著下降。该研究揭示了在林木抗逆改良中,仅依赖组成型表达难以实现理想育种目标,应探索更精准的表达调控策略以实现抗性与生长的协同优化。
中图分类号:
刘上, 王锦华, 哈斯, 刘畅. 组成型过表达PagPYL4基因对84K杨耐旱性与生长的影响[J]. 植物研究, 2025, 45(5): 722-730.
Shang LIU, Jinhua WANG, Hasi YU, Chang LIU. Effects of Constitutive Overexpression of PagPYL4 Gene on Drought Tolerance and Growth of 84K poplar[J]. Bulletin of Botanical Research, 2025, 45(5): 722-730.
表1
引物序列
引物名称 Primer name | 序列(5′→3′) Sequence(5′→3′) | 应用 Application |
---|---|---|
84KPYL4-F | CAGGTCGACTCTAGAGGATCCATGCCTGCTAATCCTCCGAG | PCR/Identification |
84KPYL4-R | GGGAAATTCGAGCTCGGTACCTCACGATGATGATTTATTATTGCGTC | PCR |
Semi-PagPYL4-F | CGGTGGTCTCCTCTACCACGC | Semi-quantitative PCR |
Semi-PagPYL4-R | GCTCATCGTCGAGGATCTCGAGG | Semi-quantitative PCR |
UBQ7-F | CCTAACTGGCAAGACCATCAC | Semi-quantitative PCR |
UBQ7-R | AGCCTCAGAACCAGATGCAGT | Semi-quantitative PCR |
NOSR | CATCGCAAGACCGGCAACAG | Identification |
[1] | AITKEN S N, YEAMAN S, HOLLIDAY J A,et al.Adaptation,migration or extirpation: climate change outcomes for tree populations[J].Evolutionary Application,2008,1(1):95-111. |
[2] | SCHNABEL F, PURRUCKER S, SCHMITT L,et al.Cumulative growth and stress responses to the 2018—2019 drought in a European floodplain forest[J].Global Change Biology,2022,28(5):1870-1883. |
[3] | 安元强,郑勇奇,林富荣,等.林木种质资源调查技术规程研制[J].林业调查规划,2016,41(3):1-6. |
AN Y Q, ZHENG Y Q, LIN F Q,et al.Development of technical regulations for forest tree germplasm resources investigation[J].Forest Inventory and Planning,2016,41(3):1-6. | |
[4] | 顾万春.中国林木遗传(种质)资源保存与研究现状[J].世界林业研究,1999(2):50-57. |
GU W C.Current situation of conservation and research on forest tree genetic (germplasm) resources in China[J].World Forestry Research,1999(2):50-57. | |
[5] | MATSUI A, ISHIDA J, MOROSAWA T,et al. Arabidopsis transcriptome analysis under drought,cold,high-salinity and ABA treatment conditions using a tiling array[J].Plant Cell Physiology,2008,49(8):1135-1149. |
[6] | YANG Y, LI H G, WANG J,et al. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica [J].Journal of Experimental Botany,2020,71(22):7270-7285. |
[7] | SOON F F, NG L M, ZHOU X E,et al.Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2Cphosphatases[J].Science,2012,335(6064):85-88. |
[8] | CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R,et al.Abscisic acid:emergence of a core signaling network[J].Annual Review of Plant Biology,2010,61:651-679. |
[9] | PIZZIO G A, RODRIGUEZ L, ANTONI R,et al.The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance[J].Plant Physiology,2013,163(1):441-455. |
[10] | PARK S Y, FUNG P, NISHIMURA N,et al.Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J].Science,2009,324(5930):1068-1071. |
[11] | WANG S, FAN Y, DU S,et al. PtaERF194 inhibits plant growth and enhances drought tolerance in poplar[J].Tree Physiology,2022,42(8):1678-1692. |
[12] | TUNG S A, SMEETON R, WHITE C A,et al.Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes[J].Plant Cell & Environment,2008,31(7):968-981. |
[13] | ZHAO Y, CHAN Z L, GAO J H,et al.ABA receptor PYL9 promotes drought resistance and leaf senescence[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(7):1949-1954. |
[14] | LI Q, SHEN C, ZHANG Y,et al. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus [J].Tree Physiology,2023,43(1):102-117. |
[15] | HE F, WANG H L, LI H G,et al.PeCHYR1,a ubiquitin E3 ligase from Populus euphratica,enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus [J].Plant Biotechnology Journal,2018,16(8):1514-1528. |
[16] | WEN S S, GE X L, WANG R,et al.An efficient agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba × P.glandulosa) using calli as explants[J].International Journal of Molecular Sciences,2022,23(4):2216. |
[17] | 金思雨,彭祚登,张舒乐.不同程度干旱胁迫和复水处理对刺槐苗木生理指标的影响[J].东北林业大学学报,2024,52(10):27-39. |
JIN S Y, PENG Z D, ZHANG S L.Effects of drought stress at different levels and rewatering treatments on the physiological indexes of Robinia pseudoacacia seedlings[J].Journal of Northeast Forestry University,2024,52(10):27-39. | |
[18] | VAHISALU T, KOLLIST H, WANG Y F,et al.SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling[J].Nature,452(7186):487-491. |
[19] | TAN YQ, YANG Y, SHEN X,et al.Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis [J].Plant Cell,2023,35(1):239-259. |
[20] | CRUZ DE CARVALHO M H.Drought stress and reactive oxygen species:production,scavenging and signaling[J].Plant Signal & Behavior,2008,3(3):156-165. |
[21] | CHEN Q, HU T, LI X,et al.Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought.Nature Plants,2022,8(1):68-77. |
[22] | Braun D M.Plant science.SWEET! The pathway is complete.Science,2012,335(6065):173-174. |
[23] | GAO J, ZHANG Y, XU C,et al.Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.).Plant Journal,2023,114(2):437-454. |
[24] | DONG N Q, LIN H X.Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions.Journal of Integrative Plant Biology,2021,63(1):180-209. |
[25] | LIU H, GAO X, FAN W,et al.Optimizing carbon and nitrogen metabolism in plants:from fundamental principles to practical applications.Journal of Integrative Plant Biology,2025,67(6):1447-1466. |
[26] | CHEN X, YAO Q, GAO X,et al.Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition.Current Biology,2016,26(5):640-646. |
[1] | 胡昕怡, 许黎明, 覃伯韬, 安倚东, 蒋国凤. 睡莲科植物叶与陆生草本植物叶供耗水特征差异[J]. 植物研究, 2025, 45(5): 675-685. |
[2] | 王芳, 杨叶磊, 苑长华, 王君, 魏伟, 吴琳, 李奎友, 李奎全, 陆志民, 王元兴, 杨雨春. 红松优树子代生长变异分析及优良材料选择[J]. 植物研究, 2025, 45(5): 816-826. |
[3] | 赵敏, 王峰, 王佳楠, 于淇, 张含国, 张磊. 抗松材线虫病落叶松优良家系选择[J]. 植物研究, 2025, 45(5): 827-836. |
[4] | 柴民伟, 吴一凡, 李瑞利, 周琳, 沈小雪. 镉和微塑料及二者复合对秋茄生长及光合特征的影响[J]. 植物研究, 2025, 45(4): 603-613. |
[5] | 潘艳艳, 李晓光, 刘立君, 李鸿, 钟鑫, 张义飞. 红松生长和根际土壤酶活性对紫丁香蘑菌剂接种的响应[J]. 植物研究, 2025, 45(3): 460-470. |
[6] | 童宝洁, 淡冬莹, 李佳蔚. 植物叶片高温耐受能力及调节策略研究进展[J]. 植物研究, 2025, 45(2): 171-180. |
[7] | 孙子腾, 王新宇, 侯丽丽, 刘月影, 郑志民. 白桦BpGRFs基因鉴定与功能初步分析[J]. 植物研究, 2025, 45(2): 191-201. |
[8] | 曾艳丽, 关艳辉, 乔璐靖, 陈雅婷, 琚存勇, 蔡体久. 近邻体结构对不同径级黄花落叶松和蒙古栎径向生长的影响[J]. 植物研究, 2025, 45(2): 254-265. |
[9] | 李潇, 王汉时, 王宏星, 蒋路平, 庞忠义, 彭彦辉, 赵曦阳. 灌溉和施肥对‘新林1号’杨生长和光合生理特性的影响[J]. 植物研究, 2025, 45(1): 77-87. |
[10] | 穆霄鹏, 牟小燕, 亓新亮, 王晶, 杨钰, 张建成, 王鹏飞. 不同生长延缓剂处理对欧李根状茎扦插生根的影响[J]. 植物研究, 2025, 45(1): 88-97. |
[11] | 刘婷, 李明月, 朱美如, 辛昊, 董博文, 张鹏. 不同水曲柳无性系种子休眠差异[J]. 植物研究, 2024, 44(5): 711-720. |
[12] | 靳旭红, 于聪, 张庭耀, 吕松瞳, 刘扬, 陈乐, 龙生, 穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选[J]. 植物研究, 2024, 44(5): 763-773. |
[13] | 王雪来, 刘晓婷, 王力冉, 李诗童, 张太进, 张嘉峰, 许经华, 曲冠证, 赵曦阳. 生长和木材性状耦合评价红松半同胞家系[J]. 植物研究, 2024, 44(4): 554-564. |
[14] | 徐晶, 崔莹, 王福森, 李开隆, 曲冠证, 赵曦阳. 东北地区不同间伐强度青山杨人工林生长及木材性状变异[J]. 植物研究, 2024, 44(2): 248-258. |
[15] | 李乾林, 郭明钢, 李佳音, 郭霞丽, 黄建国, 陈林, 李学斌. 温度和降水对宁夏六盘山自然保护区蒙古栎年内木质部生长的影响[J]. 植物研究, 2024, 44(2): 289-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||