植物研究 ›› 2025, Vol. 45 ›› Issue (4): 569-579.doi: 10.7525/j.issn.1673-5102.2025.04.009
收稿日期:
2025-03-02
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
张鹏
E-mail:zhangpeng@nefu.edu.cn
作者简介:
王喆(2000—),女,硕士研究生,主要从事森林培育研究。
基金资助:
Zhe WANG, Mingyue LI, Meiru ZHU, Peng ZHANG()
Received:
2025-03-02
Online:
2025-07-20
Published:
2025-07-25
Contact:
Peng ZHANG
E-mail:zhangpeng@nefu.edu.cn
摘要:
为研究不同初生休眠类型林木种子的适宜萌发温度及其对热休眠诱导的响应,以3种初生休眠类型(非休眠、物理休眠和生理休眠)的9个树种解除休眠后的种子为材料,分别在5、10、15、20、25、30、35 ℃的恒温下进行萌发试验,根据萌发表现确定不同树种的适宜萌发温度;在此基础上,在25、30、35 ℃下对种子进行高温培养并转移至适宜萌发温度进行14 d萌发试验,根据种子萌发表现比较不同初生休眠类型种子对热休眠诱导的响应规律。结果表明:不同初生休眠类型种子的适宜萌发温度表现出一定差异,非休眠种子(红皮云杉(Picea koraiensis)、华北落叶松(Larix principis-rupprechtii)、黑松(Pinus thunbergii))的适宜萌发温度为10~25 ℃,物理休眠种子(山皂荚(Gleditsia japonica)、刺槐(Robinia pseudoacacia)、紫穗槐(Amorpha fruticosa))的适宜萌发温度为10~35 ℃,生理休眠种子(油松(Pinus tabuliformis)、花曲柳(Fraxinus rhynchophylla)、秋子梨(Pyrus ussuriensis))的适宜萌发温度为5~30 ℃;高温抑制大部分种子萌发,仅生理休眠的秋子梨种子在高温下进入热休眠(休眠率80%~86%),而生理休眠的其他(油松和花曲柳)种子表现出较高的死亡率(46%~69%),非休眠种子表现出更高的死亡率(56%~100%),物理休眠种子表现为低死亡率(24%~64%),物理休眠种子在25~35 ℃高温下种子萌发率为36%~76%。非休眠和物理休眠种子在高温下萌发未进入热休眠,生理休眠种子在高温下是否进入热休眠、热休眠状态表现不一致。
中图分类号:
王喆, 李明月, 朱美如, 张鹏. 不同初生休眠类型林木种子适宜萌发温度及其对热休眠诱导的响应[J]. 植物研究, 2025, 45(4): 569-579.
Zhe WANG, Mingyue LI, Meiru ZHU, Peng ZHANG. Optimal Germination Temperature of Tree Seeds with Different Primary Dormancy Types and Their Responses to Thermal Dormancy Induction[J]. Bulletin of Botanical Research, 2025, 45(4): 569-579.
表1
供试林木种子基本参数
休眠类型 Dormancy type | 科属 Family and genus | 种名 Species | 种源地 Origin of seeds | 千粒质量 1 000 grains weight/g | 生活力 Viability/% | 含水量 Moisture content/% |
---|---|---|---|---|---|---|
非休眠 Non-dormancy | 松科云杉属 Pinaceae,Picea | 红皮云杉 Picea koraiensis | 黑龙江 Heilongjiang | 6.0 | 76.7 | 4.7 |
松科落叶松属 Pinaceae,Larix | 华北落叶松 Larix principis-rupprechtii | 河北 Hebei | 4.7 | 78.0 | 5.0 | |
松科松属 Pinaceae,Pinus | 黑松 Pinus thunbergii | 辽宁 Liaoning | 19.6 | 83.3 | 9.5 | |
物理休眠 Physical dormancy | 豆科皂荚属 Fabaceae,Gleditsia | 山皂荚 Gleditsia japonica | 黑龙江 Heilongjiang | 182.0 | 90.0 | 12.2 |
豆科刺槐属 Fabaceae,Robinia | 刺槐 Robinia pseudoacacia | 黑龙江 Heilongjiang | 18.5 | 100.0 | 9.2 | |
豆科紫穗槐属 Fabaceae,Amorpha | 紫穗槐 Amorpha fruticosa | 黑龙江 Heilongjiang | 18.9 | 100.0 | 7.6 | |
生理休眠 Physiological dormancy | 松科松属 Pinaceae,Pinus | 油松 Pinus tabuliformis | 河北 Hebei | 32.6 | 92.0 | 7.6 |
木犀科梣属 Oleaceae,Fraxinus | 花曲柳 Fraxinus rhynchophylla | 辽宁 Liaoning | 32.9 | 85.0 | 11.1 | |
蔷薇科梨属 Rosaceae,Pyrus | 秋子梨 Pyrus ussuriensis | 辽宁 Liaoning | 56.4 | 98.0 | 3.8 |
表2
非休眠种子在不同温度下的萌发表现
种名 Species | 发芽温度 Germination temperature/℃ | 发芽率 Germination percentage/% | 发芽指数 Germination index |
---|---|---|---|
红皮云杉 Picea koraiensis | 5 | 0d | 0c |
10 | 51.00±4.12b | 0.83±0.09b | |
15 | 65.00±1.91a | 1.29±0.05a | |
20 | 60.00±3.65a | 1.38±0.12a | |
25 | 29.00±5.00c | 0.82±0.17b | |
30 | 6.00±2.00d | 0.17±0.06c | |
35 | 0d | 0c | |
华北落叶松 Larix principis-rupprechtii | 5 | 0d | 0d |
10 | 8.00±1.63d | 0.11±0.03d | |
15 | 45.00±4.43b | 0.78±0.12c | |
20 | 49.00±4.73b | 1.15±0.16b | |
25 | 65.00±1.91a | 1.82±0.13a | |
30 | 31.00±3.79c | 0.96±0.15bc | |
35 | 0d | 0d | |
黑松 Pinus thunbergii | 5 | 0d | 0e |
10 | 0d | 0e | |
15 | 47.00±5.26b | 0.69±0.09c | |
20 | 72.00±1.63a | 1.34±0.01a | |
25 | 44.00±2.83b | 0.99±0.11b | |
30 | 13.00±2.52c | 0.31±0.07d | |
35 | 1.00±1.00d | 0.03±0.03e |
表3
物理休眠种子在不同温度下的萌发表现
种名 Species | 发芽温度 Germination temperature/℃ | 发芽率 Germination percentage/% | 发芽指数 Germination index |
---|---|---|---|
山皂荚 Gleditsia japonica | 5 | 0d | 0c |
10 | 85.00±2.52a | 3.36±0.09a | |
15 | 88.00±4.32a | 3.60±0.17a | |
20 | 72.00±2.83b | 3.09±0.12a | |
25 | 73.00±5.26b | 3.24±0.24a | |
30 | 65.00±4.43b | 3.20±0.23a | |
35 | 36.00±1.63c | 2.38±0.14b | |
刺槐 Robinia pseudoacacia | 5 | 0d | 0d |
10 | 77.00±2.52b | 3.48±0.19c | |
15 | 95.00±3.00a | 6.90±0.37a | |
20 | 79.00±1.91b | 5.75±0.10ab | |
25 | 76.00±6.93b | 6.06±0.50a | |
30 | 72.00±7.12bc | 6.43±0.73a | |
35 | 61.00±6.61c | 4.51±0.68bc | |
紫穗槐 Amorpha fruticosa | 5 | 0e | 0d |
10 | 70.00±5.77bc | 3.13±0.25bc | |
15 | 96.00±1.63a | 5.93±0.29a | |
20 | 78.00±2.58b | 5.72±0.42a | |
25 | 60.00±4.00cd | 3.88±0.26b | |
30 | 52.00±7.12d | 3.12±0.45bc | |
35 | 46.00±7.02d | 2.75±0.50c |
表4
生理休眠种子在不同温度下的萌发表现
种名 Species | 发芽温度 Germination temperature/℃ | 发芽率 Germination percentage/% | 发芽指数 Germination index |
---|---|---|---|
油松 Pinus tabuliformis | 5 | 48.00±3.27c | 1.61±0.11b |
10 | 46.00±3.46c | 1.53±0.14bc | |
15 | 69.00±3.00b | 2.48±0.12a | |
20 | 74.00±3.46ab | 2.84±0.21a | |
25 | 84.00±5.42a | 2.91±0.23a | |
30 | 38.00±4.16cd | 1.32±0.10bc | |
35 | 31.00±4.12d | 1.09±0.15c | |
花曲柳 Fraxinus rhynchophylla | 5 | 12.00±3.65d | 0.14±0.05e |
10 | 24.00±6.53cd | 0.67±0.29de | |
15 | 37.00±2.52c | 1.25±0.27cd | |
20 | 64.00±6.73b | 2.28±0.37ab | |
25 | 88.00±3.27a | 2.79±0.20a | |
30 | 54.00±3.83b | 2.10±0.26ab | |
35 | 34.00±2.58c | 1.56±0.09bc | |
秋子梨 Pyrus ussuriensis | 5 | 93.00±3.42a | 1.60±0.04a |
10 | 62.00±3.46b | 1.03±0.11b | |
15 | 34.00±3.46c | 0.61±0.07c | |
20 | 12.00±2.83d | 0.23±0.06d | |
25 | 10.00±1.15de | 0.20±0.03d | |
30 | 6.00±2.00de | 0.18±0.05d | |
35 | 2.00±1.15e | 0.06±0.03d |
[1] | GUBLER F, MILLAR A A, JACOBSEN J V.Dormancy release,ABA and pre-harvest sprouting[J].Current Opinion in Plant Biology,2005,8(2):183-187. |
[2] | BASKIN J M, BASKIN C C.A classification system for seed dormancy[J].Seed Science Research,2004,14(1):1-16. |
[3] | WILLIS C G, BASKIN C C, BASKIN J M,et al.The evolution of seed dormancy:environmental cues,evolutionary hubs,and diversification of the seed plants[J].New Phytologist,2014,203(1):300-309. |
[4] | SOLTANI E, GRUBER S, OVEISI M,et al.Water stress,temperature regimes and light control induction,and loss of secondary dormancy in Brassica napus L. seeds[J].Seed Science Research,2017,27(3):217-230. |
[5] | BATLLA D, BENECH-ARNOLD R L.Predicting changes in dormancy level in weed seed soil banks:implications for weed management[J].Crop Protection,2007,26(3):189-197. |
[6] | FINCH-SAVAGE W E, LEUBNER-METZGER G.Seed dormancy and the control of germination[J].New Phytologist,2006,171(3):501-523. |
[7] | BATLLA D, BENECH-ARNOLD R L.A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy[J].Seed Science Research,2015,25(2):147-158. |
[8] | KHAN A A.Induction of dormancy in nondormant seeds[J].Journal of the American Society for Horticultural Science,1994,119(3):408-413. |
[9] | 刘彦文,李明,姚东伟.引发对莴苣种子萌发及减轻其高温休眠的影响[J].种子,2010,29(10):54-56. |
LIU Y W, LI M, YAO D W.Effects of priming treatment on germination and decreasing dormancy at high temperature of lettuce seed[J].Seed,2010,29(10):54-56. | |
[10] | SILVA T A DA, BALDINI L F G, FERREIRA G,et al.Thermoinhibition in parsley seeds[J].Bioscience Journal,2017,33(6):1412-1418. |
[11] | SOLTANI E, BASKIN J M, BASKIN C C.A review of the relationship between primary and secondary dormancy,with reference to the volunteer crop weed oilseed rape (Brassica napus)[J].Weed Research,2019,59(1):5-14. |
[12] | CHAHTANE H, KIM W, LOPEZ-MOLINA L.Primary seed dormancy:a temporally multilayered riddle waiting to be unlocked[J].Journal of Experimental Botany,2017,68(4):857-869. |
[13] | EDWARDS B, BURGHARDT L T, KOVACH K E,et al.Canalization of seasonal phenology in the presence of developmental variation:seed dormancy cycling in an annual weed[J].Integrative and Comparative Biology,2017,57(5):1021-1039. |
[14] | JAGANATHAN G K, BIDDICK M.Critical role of air and soil temperature in the development of primary and secondary physical dormancy in Albizia julibrissin (Fabaceae)[J].Journal of Tropical Ecology,2020,36(6):251-257. |
[15] | LIU L, FAN W Q, LIU F X,et al.Increased BnaMFT-transcript level is associated with secondary dormancy in oilseed rape (Brassica napus L.)[J].Journal of Integrative Agriculture,2020,19(6):1565-1576. |
[16] | NÉE G, OBENG-HINNEH E, SARVARI P,et al.Secondary dormancy in Brassica napus is correlated with enhanced BnaDOG1 transcript levels[J].Seed Science Research,2015,25(2):221-229. |
[17] | BUIJS G.A perspective on secondary seed dormancy in Arabidopsis thaliana [J].Plants,2020,9(6):749. |
[18] | COUGHLAN J M, SAHA A, DONOHUE K.Effects of pre- and post-dispersal temperature on primary and secondary dormancy dynamics in contrasting genotypes of Arabidopsis thaliana (Brassicaceae)[J].Plant Species Biology,2017,32(3):210-222. |
[19] | AUGE G A, BLAIR L K, BURGHARDT L T,et al.Secondary dormancy dynamics depends on primary dormancy status in Arabidopsis thaliana [J].Seed Science Research,2015,25(2):230-246. |
[20] | JAGANATHAN G K.Unravelling the paradox in physically dormant species:elucidating the onset of dormancy after dispersal and dormancy-cycling[J].Annals of Botany,2022,130(2):121-129. |
[21] | 全国林草种子标准化技术委员会. 林木种子检验规程: [S].北京:中国标准出版社,1999. |
National Technical Committee for Standardization of Forest and Grass Seeds. Rules for forest tree seed testing: [S].Beijing:China Standards Press,1999. | |
[22] | CAO D C, BASKIN C C, BASKIN J M,et al.Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub[J].Annals of Botany,2014,113(1):171-179. |
[23] | 刘长乐.热水处理对山皂荚种子萌发的影响[J].林业科技,2012,37(1):35-37. |
LIU C L.Effects of hot water treatment on germination and seedling growth of Gleditsia japonica [J].Forestry Science & Technology,2012,37(1):35-37. | |
[24] | 曹帮华,耿蕴书,牟洪香.刺槐种子硬实破除方法探讨[J].种子,2002(4):22-24. |
CAO B H, GENG Y S, MOU H X.Studies on methods of breaking hard seed of black locust[J].Seed,2002(4):22-24. | |
[25] | 徐同冰.紫穗槐种子萌发特性研究[J].现代农业科技,2011(7):202-204. |
XU T B.Study on the characteristics of seed germination of Amorpha fruticosa L.[J].Modern Agricultural Science and Technology,2011(7):202-204. | |
[26] | PRITCHARD H W, DAWS M I, FLETCHER B J,et al.Ecological correlates of seed desiccation tolerance in tropical African dryland trees[J].American Journal of Botany,2004,91(6):863-870. |
[27] | KILDISHEVA O A, DIXON K W, SILVEIRA F A O,et al.Dormancy and germination:making every seed count in restoration[J].Restoration Ecology,2020,28(S3):S256-S265. |
[28] | 袁荣珍,王国宏,唐志尧,等.红皮云杉林的植被分类及其环境解释[J].植物学报,2022,57(4):468-478. |
YUAN R Z, WANG G H, TANG Z Y,et al.The vegetation classification on Picea koraiensis forest alliance and its environmental interpretation[J].Chinese Bulletin of Botany,2022,57(4):468-478. | |
[29] | 石娇星,许洺山,方晓晨,等.中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J].植物生态学报,2021,45(2):163-173. |
SHI J X, XU M S, FANG X C,et al.Latitudinal variability and driving factors of functional diversity in Pinus thunbergii communities across sea-islands in Eastern China[J].Chinese Journal of Plant Ecology,2021,45(2):163-173. | |
[30] | 刘阳,苗晨,王鹤松.气候变化对落叶松人工林在中国适生区分布的影响[J].生态学报,2023,43(23):9686-9698. |
LIU Y, MIAO C, WANG H S.Influence of climate change on distribution of suitable areas of Larix plantation in China[J].Acta Ecologica Sinica,2023,43(23):9686-9698. | |
[31] | LUNA B, PIÑAS-BONILLA P, ZAVALA G,et al.Timing of fire during summer determines seed germination in Mediterranean Cistaceae[J].Fire Ecology,2023,19(1):52. |
[32] | WEN Z Z, LU X R, WEN J Q,et al.Physical seed dormancy in legumes:molecular advances and perspectives[J].Plants,2024,13(11):1473. |
[33] | 唐兴港,袁颖丹,张金池.气候变化对油松潜在地理分布时空格局的影响[J].东北林业大学学报,2021,49(9):1-7. |
TANG X G, YUAN Y D, ZHANG J C.Simulation of potential spatial-temporal population dynamics of Pinus tabuliformis under climate change[J].Journal of Northeast Forestry University,2021,49(9):1-7. | |
[34] | 项凤武,姚丛军,刘艳华.花曲柳的分布、生长及天然更新的研究[J].吉林林学院学报,1997,13(4):212-215. |
XIANG F W, YAO C J, LIU Y H.On the distribution growth and natural regeneration of Fraxinus chinensis [J].Journal of Jilin Forestry University,1997,13(4):212-215. | |
[35] | 滕元文.梨属植物系统发育及东方梨品种起源研究进展[J].果树学报,2017,34(3):370-378. |
TENG Y W.Advances in the research on phylogeny of the genus Pyrus and the origin of pear cultivars native to East Asia[J].Journal of Fruit Science,2017,34(3):370-378. | |
[36] | GENEVE R L, BASKIN C C, BASKIN J M,et al.Functional morpho-anatomy of water-gap complexes in physically dormant seed[J].Seed Science Research,2018,28(3):186-191. |
[37] | GEHAN JAYASURIYA K M G, BASKIN J M, BASKIN C C.Sensitivity cycling and its ecological role in seeds with physical dormancy[J].Seed Science Research,2009,19(1):3-13. |
[38] | ZHENG L P, OTANI M, KAWAKAMI N.Assessment of dormancy level and germination ability of seeds with physiological dormancy[J].Methods in Molecular Biology,2024,2830:27-34. |
[39] | LASPINA N V, BATLLA D, BENECH-ARNOLD R L.Dormancy cycling is accompanied by changes in ABA sensitivity in Polygonum aviculare seeds[J].Journal of Experimental Botany,2020,71(19):5924-5934. |
[40] | TOH S, IMAMURA A, WATANABE A,et al.High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J].Plant Physiology,2008,146(3):1368-1385. |
[41] | 刘卓琳.山梨种子的适宜萌发温度及其种子热休眠机理研究[D].哈尔滨:东北林业大学,2024. |
LIU Z L.Optimum germination temperature and thermodormancy mechanism of Pyrus ussuriensis seeds[D].Harbin:Northeast Forestry University,2024. |
[1] | 程薪宇, 郭梦桥, 官海云, 茹剑, 白琰, 郭连金. 香果树种子萌发的光照需求及其转录组响应分析[J]. 植物研究, 2025, 45(4): 546-557. |
[2] | 刘婷, 李明月, 朱美如, 辛昊, 董博文, 张鹏. 不同水曲柳无性系种子休眠差异[J]. 植物研究, 2024, 44(5): 711-720. |
[3] | 靳旭红, 于聪, 张庭耀, 吕松瞳, 刘扬, 陈乐, 龙生, 穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选[J]. 植物研究, 2024, 44(5): 763-773. |
[4] | 唐双龙, 陈时鑫, 王煜, 马丹炜, 杨世辉, 聂申明, 扎西泽里, 田正友. 中国特有种大理白前对高寒环境的形态适应特征[J]. 植物研究, 2024, 44(3): 389-399. |
[5] | 管岳, 申文靖, 宋晓萌, 王妍欣, 阿克居力得孜·努尔改里得, 陈鹏飞, 周龙. 巴尔鲁克山野扁桃种子萌发特性[J]. 植物研究, 2024, 44(3): 400-409. |
[6] | 王仁睿, 刘鑫, 李杰. 濒危植物春剑的胚胎发育及果实和种子特征研究[J]. 植物研究, 2023, 43(6): 953-960. |
[7] | 王丹, 张中帅, 曾庆银, 韩学敏. 滇西北冷杉属植物结实特性及种子特征研究[J]. 植物研究, 2023, 43(5): 647-656. |
[8] | 吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云. 极危植物百山祖冷杉的种子雨[J]. 植物研究, 2023, 43(5): 711-719. |
[9] | 矫春晶, 李明月, 张鹏. 外源激素浸种与渗透处理对水曲柳种子热休眠的作用[J]. 植物研究, 2023, 43(3): 370-378. |
[10] | 久西加, 王玉辉, 陈红刚, 王惠珍, 曾翠云, 杜弢. 基于熵权TOPSIS模型的桃儿七种子超低温保存条件筛选[J]. 植物研究, 2023, 43(3): 404-411. |
[11] | 唐莹莹, 郭传超, 石荡, 蒋南林, 许正, 刘立强. 果肉和埋土深度对新疆野杏种子萌发与幼苗生长的影响[J]. 植物研究, 2023, 43(2): 251-260. |
[12] | 杨建伟, 李宗艳, 冯尧, 任书娴, 胡梦露, 叶松菩. 束花石斛的繁育生物学特性[J]. 植物研究, 2023, 43(1): 150-160. |
[13] | 曹小路, 赵巧竹, 幸华, 栗孟飞. 桃儿七种子解剖结构及其萌发生长期形态特征[J]. 植物研究, 2022, 42(5): 746-752. |
[14] | 王欢, 徐云飞, 刘一伯, 刘沁松, 徐文娟, 龙芸, 胥晓. 珙桐—灯台树枝和叶的水提物对白菜种子萌发和幼苗生长的化感效应[J]. 植物研究, 2022, 42(5): 866-875. |
[15] | 乐新贵, 王正伟, 宁馨, 孙锡青, 宋以刚. 苦槠传播体的萌发特性与种子休眠类型[J]. 植物研究, 2022, 42(4): 688-693. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||