Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 481-491.DOI: 10.1016/j.pld.2021.08.001
• Research paper • Previous Articles Next Articles
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng
Received:
2021-03-23
Revised:
2021-07-26
Online:
2022-10-14
Published:
2022-09-25
Supported by:
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng
通讯作者:
Yupeng Pan,E-mail:yupeng.pan@nwafu.edu.cn;Zhihui Cheng,E-mail:chengzh@nwafu.edu.cn
基金资助:
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm[J]. Plant Diversity, 2022, 44(05): 481-491.
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm[J]. Plant Diversity, 2022, 44(05): 481-491.
[1] Aggarwal, R.K., Hendre, P.S., Varshney, R.K., Bhat, P.R., Krishnakumar, V., Singh, L. et al., 2007. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet. 114(2), 359-372 [2] Al-Zahim, M., Newbury, H.J., Ford-Lloyd, B.V., 1997. Classification of genetic variation in garlic (Allium sativum L.) revealed by RAPD. Hortscience. 32, 1102-1104 [3] Avato, P., Miccolis, V., Tursi, F., 1998. Agronomic evaluation and essential oil content of garlic (Allium sativum L.) ecotypes grown in Southern Italy. Adv. Hortic. Sci. 12, 201-204 [4] Baghalian, K., Ziai, S. A., Naghavi, M. R., Badi, H. N., Khalichi, A., 2005. Evaluation of allicin content and botanical traits in Iranian garlic (Allium sativum L.) ecotypes. Sci. Hortic. 103, 155-166 [5] Barboza, K., Salinas, M.C., Acuna, C.V., Bannoud, F., Beretta, V., Garcia-Lampasona, S., Burba, J.L., Galmarini, C.R., 2020. Assessment of genetic diversity and population structure in a garlic (Allium sativumL.) germplasm collection varying in bulb content of pyruvate, phenolics, and solids. Sci. Hortic. 261 [6] Blair, M.W., Hurtado, N., 2013. EST-SSR markers from five sequenced cDNA libraries of common bean (Phaseolus vulgaris L.) comparing three bioinformatic algorithms. Molecular Ecology Resources. 13, 688-695 [7] Bradley, K., Rieger, M.A., Collins, G., 1996. Classification of Australian garlic cultivars by DNA fingerprinting. Anim. Prod. Sci. 36, 613-618 [8] Cloutier, S., Niu, Z., Datla, R., Duguid, S., 2009. Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor. Appl. Genet. 119, 53-63 [9] Cunha, C.P., Hoogerheide, E.S., Zucchi, M.I., Monteiro, M., Pinheiro, J.B., 2012. New microsatellite markers for garlic, Allium sativum (Alliaceae). Am. J. Bot. 99, e17-19 [10] Cunha, C.P., Resende, F.V., Zucchi, M.I., Pinheiro, J.B., 2014. SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica. 142, 419-431 [11] Earl, D.A., Vonholdt, B.M., 2012. Structure harvester:a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources. 4(2), 359-361 [12] Egea, L.A., Rosa, M.G., Andrzej, K., Pilar, H., Gabriel, D., 2017. Assessment of genetic diversity and structure of large garlic (Allium sativum L.) germplasm bank, by diversity arrays technology "genotyping-by-sequencing" platform (dartseq). Front. Genet. 8 [13] Figliuolo, G., Candido, V., Logozzo, G., Miccolis, V., Spagnoletti, P.L., Zeuli, P.L., 2001. Genetic evaluation of cultivated garlic germplasm (Allium sativum L. and A. ampeloprasum L.). Euphytica. 121, 325-334 [14] Govindaraj, M., Vetriventhan, M., Srinivasan, M., 2015. Importance of genetic diversity assessment in crop plants and its recent advances:an overview of its analytical perspectives. Genet. Res. Int. 2015, 431487-431487 [15] Hong, C.J., Etoh, T., 1996. Fertile clones of garlic (Allium sativum L.) abundant around the Tien Shan Mountains. Breed Sci. 46, 349-353 [16] Ipek, M., Ipek, A., Almquist, S.G., and Simon, P.W., 2005. Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor. Appl. Genet. 110, 228-236 [17] Ipek, M. et al., Ipek A., Simon P.W., 2003. Comparison of AFLPs, RAPD markers and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J. Am. Soc. Hortic. Sci. 128, 246-252 [18] Ipek, M., Sahin, N., Ipek, A., Cansev, A., and Simon, P. 2015. Development and validation of new SSR markers from expressed regions in the garlic genome. Sci. Agric. 72, 41-46 [19] Kalia, R.K., Rai, M.K., Kalia, S., Singh, R., Dhawan, A.K. 2011. Microsatellite markers:an overview of the recent progress in plants. Euphytica. 177, 309-334 [20] Lee, G., Kwon, S., Park, Y., Lee, M., Kim, H., Lee, J., Lee, S., Gwag, J., Kim, C., Ma, K. 2011. Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Sci. Hortic. 128, 401-407 [21] Liu, H., Deng, R., Huang, C., et al. 2019. Exogenous gibberellins alter morphology and nutritional traits of garlic (Allium sativum L.) bulb. Sci. Hortic. 246, 298-306 [22] Liu, H., Wen, Y., Cui, M., Qi, X., Cheng, Z. 2020. Histological, physiological and transcriptomic analysis reveal gibberellin-induced axillary meristem formation in garlic (Allium Sativum L.). Plants. 9(8) [23] Liu, T., Zeng, L., Zhu, S., Chen, X., Tang, Q., Mei, S., Tang, S. 2015. Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.). Mol. Breed. 35(11), 204 [24] Liu, T., Zhu, S., Fu, L., Tang, Q., Yu, Y., Chen, P., Luan, M., Wang, C., Tang, S. 2013. Development and characterization of 1827 expressed sequence tag-derived simple sequence repeat markers in ramie (Boehmeria nivea L. Gaud). PloS One 8:e60346 [25] Lu, J.J., Kang, J.Y., Feng, S.G., Zhao, H.Y., Liu, J.J., Wang, H.Z. 2013. Transferability of SSR markers derived from Dendrobium nobile expressed sequence tags (ESTs) and their utilization in Dendrobium phylogeny analysis. Sci. Hortic. 158, 8-15 [26] Ma, K., Kwag, J., Zhao, W., Dixit, A., Lee, G., Kim, H., Chung, I., Kim, N., Lee, J., Ji, J. et al. 2009. Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci. Hortic. 122, 355-361 [27] Maass, H. I., and Klaas, M. 1995. Infraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor. Appl. Genet. 91, 89-97 [28] Meryem, I., Nihan, S., Ahmet, I., Asuman, C.,&Simon, P.W. 2015. Development and validation of new SSR markers from expressed regions in the garlic genome. Sci. Agric., 72(1), 41-46 [29] Mohanty, P., Sahoo, L., Parida, K., Das, P. 2013. Development of polymorphic EST-SSR markers in Macrobrachium rosenbergii by data mining. Conservation and Genetic Resources, 5, 133-136 [30] Morales, R.G.F., Resende, J.T.V., Resende, F.V., Delatorre, C.A., Figueiredo, A.S.T., Da Silva, P.R. 2013. Genetic divergence among Brazilian garlic cultivars based on morphological characters and AFLP markers. Genet. Mol. Res. 12, 270-281 [31] Murray, M. G. and Thompson, W. F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325 [32] Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70(12), 3321-3323 [33] Ovesna, J. Leisova-Svobodova, L., and Kuˇcera, L, 2014. Microsatellite analysis indicates the specific genetic basis of Czech bolting garlic. Czech J. Genet. Plant Breed. 50, 226-234 [34] Pagnotta, M.A., 2018. Comparison among methods and statistical software packages to analyze germplasm genetic diversity by means of codominant markers. J, 1(1), 197-215 [35] Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research——an update. Bioinformatics. 1, 28(19):2537-2539 [36] Polyzos, N., Papasotiropoulos, V., Lamari, F.N. et al., 2019. Phenotypic characterization and quality traits of Greek garlic (Allium sativum L.) germplasm cultivated at two different locations. Genet. Resour. Crop Evol. 66, 1671-1689 [37] Pooler, M.R., Simon, P.W., 1993. Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 68, 121-130 [38] Pritchard, J.K., Stephens, M.J., Donnelly, P.J., 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959 [39] Rahman, K., Lowe, G.M., 2006. Garlic and cardiovascular disease:a critical review. J. Nutr. 136, 736S-740S [40] Raja, H., Ram, C.N., SriomBhargav, K.K., Pandey, M., Jain, A., 2017. Genetic variability assessment in garlic (Allium sativum L.) genotypes. J Pharmacogn Phytochem 6(6), 1781-1786 [41] Singh, L., Kaul, V., Gohil, R.N., 2014. Analysis of morphological variability in the Indian germplasm of Allium sativum L. Plant Syst Evol 300(2), 245-254 [42] Vaek, J., Daniela ilova, Martina Melounova, Svoboda, P., Vejl, P.,&Radka tikarova, et al., 2020. New EST-SSR markers for individual genotyping of opium poppy cultivars (papaver somniferum L.). Plants, 9(1) [43] Varshney, R.K., Graner, A., Sorrells, M.E., 2005. Genic microsatellite markers in plants:features and applications. Trends Biotechnol. 23, 48-55 [44] Varshney, R.K., Grosse, I., Hahnel, U., Siefken, R., Prasad, M., Stein, N., Langridge, P., Altschmied, L., Grane, A., 2006. Genetic mapping and BAC assignment of EST-derived SSR markers shows nonuniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239-250 [45] Vavilov, N.I., 1951. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13 [46] Volk, G.M., Henk, A.D., Richards, C.M., 2004. Genetic diversity among U.S. Garlic clones as detected using AFLP methods. J. Am. Soc. Hortic. Sci. 129, 559-569 [47] Wang, H., Li, X., Liu, X., Oiu, Y., Song, J., Zhang, X., 2016. Genetic diversity of garlic (Allium sativum L.) germplasm from China by fluorescent-based AFLP, SSR and InDel markers. Plant Breed. 135, 743-750 [48] Wang, H., Li, X., Shen, D., Oiu, Y., Song, J., 2014. Diversity evaluation of morphological traits and allicin content in garlic (Allium sativum L.) from China. Euphytica 198, 243-254 [49] Wright, S. Evolution and the Genetics of Populations, Variability within and Among Natural Population. The University of Chicago Press:Chicago, United States, 1978:4 [50] Zhao, W.G., Chung, J.W., Lee, G.A., Ma, K.H., Kim, H.H., Kim, K.T., Chung, I.M., Lee, J.K., Kim, N.S., Kim, S.M., Park, Y.J., 2011. Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed., 130, 46-54 [51] Zhu, H.Y., Song, P.Y., Dal-Hoe, Guo, L.Q., Li, Y.M., Sun, S.R., Weng, Y.Q., Yang, L.M., 2016. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genom. 17, 557 |
[1] | Mustaqeem Ahmad, Ya-Huang Luo (罗亚皇), Sonia Rathee, Robert A. Spicer, Jian Zhang (张健), Moses C. Wambulwa, Guang-Fu Zhu (朱光福), Marc W. Cadotte, Zeng-Yuan Wu (吴增源), Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li (李德铢), Jie Liu (刘杰). Multifaceted plant diversity patterns across the Himalaya: Status and outlook [J]. Plant Diversity, 2025, 47(04): 529-543. |
[2] | Jianchao Liang, Zhifeng Ding, Ganwen Lie, Zhixin Zhou, Zhixiang Zhang, Huijian Hu. Climate-driven environmental filtering determines hump-shaped elevational pattern of seed plant beta diversity in the central Himalayas [J]. Plant Diversity, 2025, 47(02): 264-272. |
[3] | Hong Qian, Oriol Grau. Geographic patterns and ecological causes of phylogenetic structure in mosses along an elevational gradient in the central Himalaya [J]. Plant Diversity, 2025, 47(01): 98-105. |
[4] | Zhiliang Yao, Xia Pan, Xin Yang, Xiaona Shao, Bin Wang, Yun Deng, Zhiming Zhang, Qiaoming Li, Luxiang Lin. Canopy structural heterogeneity drives α and β species-genetic diversity correlations in a Chinese subtropical forest [J]. Plant Diversity, 2025, 47(01): 106-114. |
[5] | Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu. Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia [J]. Plant Diversity, 2024, 46(05): 600-610. |
[6] | Yixian Li, Xuyao Zhao, Manli Xia, Xinzeng Wei, Hongwei Hou. Temperature is a cryptic factor shaping the geographical pattern of genetic variation in Ceratophyllum demersum across a subtropical freshwater lake [J]. Plant Diversity, 2024, 46(05): 630-639. |
[7] | Miao-Miao Li, Muditha K. Meegahakumbura, Moses C. Wambulwa, Kevin S. Burgess, Michael Möller, Zong-Fang Shen, De-Zhu Li, Lian-Ming Gao. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica) [J]. Plant Diversity, 2024, 46(02): 229-237. |
[8] | Cindy Q. Tang, Shi-Qian Yao, Peng-Bin Han, Jian-Ran Wen, Shuaifeng Li, Ming-Chun Peng, Chong-Yun Wang, Tetsuya Matsui, Yong-Ping Li, Shan Lu, Yuan He. Forest characteristics, population structure and growth trends of threatened relict Pseudotsuga forrestii in China [J]. Plant Diversity, 2023, 45(04): 422-433. |
[9] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[10] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[11] | Moses C. Wambulwa, Peng-Zhen Fan, Richard Milne, Zeng-Yuan Wu, Ya-Huang Luo, Yue-Hua Wang, Hong Wang, Lian-Ming Gao, Zuo-Ying Xiahou, Ye-Chuan Jin, Lin-Jiang Ye, Zu-Chang Xu, Zhi-Chun Yang, De-Zhu Li, Jie Liu. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement [J]. Plant Diversity, 2022, 44(06): 530-541. |
[12] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems [J]. Plant Diversity, 2022, 44(03): 231-242. |
[13] | Qiao-Ming Li, Chao-Nan Cai, Wu-Mei Xu, Min Cao, Li-Qing Sha, Lu-Xiang Lin, Tian-Hua He. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly [J]. Plant Diversity, 2022, 44(03): 271-278. |
[14] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments [J]. Plant Diversity, 2022, 44(02): 153-162. |
[15] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||