Plant Diversity ›› 2025, Vol. 47 ›› Issue (04): 529-543.DOI: 10.1016/j.pld.2025.04.003
• Review • Next Articles
Mustaqeem Ahmada,b, Ya-Huang Luo (罗亚皇)a,b, Sonia Ratheec, Robert A. Spicerd,e,f, Jian Zhang (张健)g, Moses C. Wambulwaa,b,h, Guang-Fu Zhu (朱光福)a,b, Marc W. Cadottei, Zeng-Yuan Wu (吴增源)b, Shujaul Mulk Khanj,k, Debabrata Maityl, De-Zhu Li (李德铢)a,b, Jie Liu (刘杰)a,b,i
Received:
2024-08-19
Revised:
2025-04-07
Online:
2025-08-13
Published:
2025-08-13
Contact:
De-Zhu Li (李德铢),E-mail:dzl@mail.kib.ac.cn;Jie Liu (刘杰),E-mail:liujie@mail.kib.ac.cn
Supported by:
Mustaqeem Ahmada,b, Ya-Huang Luo (罗亚皇)a,b, Sonia Ratheec, Robert A. Spicerd,e,f, Jian Zhang (张健)g, Moses C. Wambulwaa,b,h, Guang-Fu Zhu (朱光福)a,b, Marc W. Cadottei, Zeng-Yuan Wu (吴增源)b, Shujaul Mulk Khanj,k, Debabrata Maityl, De-Zhu Li (李德铢)a,b, Jie Liu (刘杰)a,b,i
通讯作者:
De-Zhu Li (李德铢),E-mail:dzl@mail.kib.ac.cn;Jie Liu (刘杰),E-mail:liujie@mail.kib.ac.cn
基金资助:
Mustaqeem Ahmad, Ya-Huang Luo (罗亚皇), Sonia Rathee, Robert A. Spicer, Jian Zhang (张健), Moses C. Wambulwa, Guang-Fu Zhu (朱光福), Marc W. Cadotte, Zeng-Yuan Wu (吴增源), Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li (李德铢), Jie Liu (刘杰). Multifaceted plant diversity patterns across the Himalaya: Status and outlook[J]. Plant Diversity, 2025, 47(04): 529-543.
Mustaqeem Ahmad, Ya-Huang Luo (罗亚皇), Sonia Rathee, Robert A. Spicer, Jian Zhang (张健), Moses C. Wambulwa, Guang-Fu Zhu (朱光福), Marc W. Cadotte, Zeng-Yuan Wu (吴增源), Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li (李德铢), Jie Liu (刘杰). Multifaceted plant diversity patterns across the Himalaya: Status and outlook[J]. Plant Diversity, 2025, 47(04): 529-543.
Ahmad, M., 2022. Species Composition and Floral Trait Diversity along an Altitudinal Gradient in the Western Himalaya. Ph.D. thesis. Panjab University, Chandigarh, India. https://hdl.handle.net/10603/373396. Ahmad, M., Uniyal, S.K., Batish, D.R., et al., 2020. Patterns of plant communities along vertical gradient in Dhauladhar mountains in Lesser Himalaya in North-Western India. Sci. Total Environ. 716, 136919. https://doi.org/10.1016/j.scitotenv.2020.136919. Ahmad, M., Uniyal, S.K., Batish, D.R., et al., 2021. Flower phenological events and duration pattern is influenced by temperature and elevation in Dhauladhar mountain range of Lesser Himalaya. Ecol. Indic. 129, 107902. https://doi.org/10.1016/j.ecolind.2021.107902. Ahmad, M., Rosbakh, S., Bucher, S.F., et al., 2023a. The role of floral traits in community assembly processes at high elevations in the Himalaya. J. Ecol. 111, 1107-1119. Ahmad, M., Uniyal, S.K., Sharma, P., et al., 2023b. Enhanced plasticity and reproductive fitness of floral and seed traits facilitate non-native species spread in mountain ecosystems. J. Environ. Manag. 348, 119222. https://doi.org/10.1016/j.jenvman.2023.119222. Ashton, P., Zhu, H., 2020. The tropical-subtropical evergreen forest transition in East Asia:an exploration. Plant Divers. 42, 255-280. https://doi.org/10.1016/j.pld.2020.04.001. Basnett, S., Devy, S.M., 2021. Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya. Alpine Bot. 131, 63-72. https://doi.org/10.1007/s00035-020-00244-5. Basnett, S., Nagaraju, S.K., Ravikanth, G., et al., 2019. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons. Ecosphere 10, e02581. https://doi.org/10.1002/ecs2.2581. Behera, M.D., Roy, P.S., 2019. Pattern of distribution of angiosperm plant richness along latitudinal and longitudinal gradients of India. Biodivers. Conserv. 28, 2035-2048. https://doi.org/10.1007/s10531-019-01772-1. Bhatta, K.P., Grytnes, J.A., Vetaas, O.R., 2018. Downhill shift of alpine plant assemblages under contemporary climate and land-use changes. Ecosphere 9, e02084. https://doi.org/10.1002/ecs2.2084. Brauer, C.J., Sandoval-Castillo, J., Gates, K., et al., 2023. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Change 13, 282-289. https://doi.org/10.1038/s41558-022-01585-1. Breed, M.F., Harrison, P.A., Blyth, C., et al., 2019. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615-628. https://doi.org/10.1038/s41576-019-0152-0. Cadotte, M.W., 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989-996. https://doi.org/10.1111/ele.12796. Cadotte, M.W., Davies, T.J., 2016. Phylogenies in Ecology:a Guide to Concepts and Methods. Princeton University Press. Cadotte, M.W., Dinnage, R., Tilman, D., 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223-S233. https://doi.org/10.1890/11-0426.1. Callaway, R.M., Brooker, R.W., Choler, P., et al., 2002. Positive interactions among alpine plants increase with stress. Nature 417, 844-848. https://doi.org/10.1038/nature00812. Chang, D., 1981. The vegetation zonation of the Tibetan Plateau. Mt. Res. Dev. 1, 29-48. Colwell, R.K., Rahbek, C., Gotelli, N.J. 2004. The mid-domain effect and species richness patterns:what have we learned so far? Am. Nat. 163, E1-E23. https://doi.org/10.1086/382056. Cornwell, W.K., Ackerly, D.D., 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109-126. https://doi.org/10.1890/07-1134.1. Cun, Y.Z., Wang, X.Q., 2010. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau:geographical isolation contributed to high population differentiation. Mol. Phylogenet. Evol. 56, 972-982. https://doi.org/10.1016/j.ympev.2010.05.007. Dentant, C., 2018. The highest vascular plants on Earth. Alpine Bot. 128, 97-106. https://doi.org/10.1007/s00035-018-0208-3. Ding, L., Spicer, R.A., Yang, J., et al., 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215-218. https://doi.org/10.1130/G38583.1. Ding, W.N., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369, 578-581. https://doi.org/10.1126/science.abb4484. Ding, L., Kapp, P., Cai, F., et al., 2022. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652-667. https://doi.org/10.1038/s43017-022-00318-4. Dolezal, J., Jandova, V., Macek, M., et al., 2021. Climate warming drives Himalayan alpine plant growth and recruitment dynamics. J. Ecol. 109, 179-190. https://doi.org/10.1111/1365-2745.13459. Dubey, B., Yadav, R., Singh, J.S., et al., 2003. Upward shift of Himalayan pine in Western Himalaya, India. Curr. Sci. 85, 1135-1136. Elbasiouny, H., El-Ramady, H., Elbehiry, F., et al., 2022. Plant nutrition under climate change and soil carbon sequestration. Sustainability 14, 914. https://doi.org/10.3390/su14020914. Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10. https://doi.org/10.1016/0006-3207(92)91201-3. Favre, A., Packert, M., Pauls, S.U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. https://doi.org/10.1111/brv.12107. Fick, S.E., Hijmans, R.J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086. Frankham, R., Ballou, J.D., Ralls, K., et al., 2017. Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, Oxford, England, UK. Gaire, N.P., Koirala, M., Bhuju, D.R., et al., 2014. Treeline dynamics with climate change at Central Nepal Himalaya. Clim. Past. 9, 1277-1290. https://doi.org/10.5194/cp-10-1277-2014. Gairola, S., Rawal, R.S., Todaria, N.P., 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. Afr. J. Plant Sci. 2, 42-48. https://www.academicjournals.org/AJPS. Gebelin, A., Mulch, A., Teyssier, C., et al., 2013. The miocene elevation of Mount Everest. Geology 41, 799-802. https://doi.org/10.1130/G34331.1. Gratzer, G., Rai, P.B., Darabant, A., et al., 2004. Leaf characteristics and growth response to light of understory Rhododendron hodgsonii in the Bhutan Himalaya. Ekologia 23, 283-297. Hamid, M., Khuroo, A.A., Malik, A.H., et al., 2020. Early evidence of shifts in alpine summit vegetation:a case study from Kashmir Himalaya. Front. Plant Sci. 11, 421. https://doi.org/10.3389/fpls.2020.00421. Hawkins, B.A., Diniz-Filho, J.A.F., Weis, A.E., 2005. The mid-domain effect and diversity gradients:is there anything to learn? Am. Nat. 166, E140-E143. https://doi.org/10.1086/491686. Hijmans, R.J., Bivand, R., 2022. Terra:Spatial Data Analysis. R package version 1.7, 1. https://doi.org/10.32614/CRAN.package.terra. Huang, C., Xu, Y., Zang, R., 2021. Variation patterns of functional trait moments along geographical gradients and their environmental determinants in the subtropical evergreen broadleaved forests. Front. Plant Sci. 12, 686965. https://doi.org/10.3389/fpls.2021.686965. Huang, X., Yin, Y., Feng, L., et al., 2024. A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types. Earth Syst. Sci. Data 16, 3307-3332. https://doi.org/10.5194/essd-16-3307-2024. Islam, T., Hamid, M., Nawchoo, I.A., et al., 2024. Leaf functional traits vary among growth forms and vegetation zones in the Himalaya. Sci. Total Environ. 906, 167274. https://doi.org/10.1016/j.scitotenv.2023.167274. Jugran, A.K., Bhatt, I.D., Rawal, R.S., et al., 2013. Patterns of morphological and genetic diversity of Valeriana jatamansi Jones in different habitats and altitudinal range of West Himalaya, India. Flora 208, 13-21. https://doi.org/10.1016/j.flora.2012.12.003. Jump, A.S., Marchant, R., Penuelas, J., 2009. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51-58. https://doi.org/10.1016/j.tplants.2008.10.002. Jung, M., Dahal, P.R., Butchart, S.H., et al., 2020. A global map of terrestrial habitat types. Sci. Data 7, 256. https://doi.org/10.1038/s41597-020-00599-8. Khan, M.A., Mahato, S, Spicer, R.A., et al., 2023. Siwalik plant megafossil diversity in the Eastern Himalayas:A review. Plant Divers. 45, 243-264. Khan, M.S., Khan, S.M., Abdullah, et al., 2025. Ecological assessment of Iris hookeriana across subalpine and alpine regions of the Hindu-Himalayas. Front. For. Glob. Change. 8, 1539025. doi:10.3389/ffgc.2025.1539025. Khan, S.M., Page, S.E., Ahmad, H., et al., 2013. Sustainable utilization and conservation of plant biodiversity in montane ecosystems:the western Himalayas as a case study. Ann. Bot. 112, 479-501. doi:10.1093/aob/mct125. Khan, S.M., Page, S.E., Ahmad, H., et al., 2014. Ethno-ecological importance of plant biodiversity in mountain ecosystems with special emphasis on indicator species of a Himalayan Valley in the northern Pakistan. Ecol. Indic. 37, 175-85. doi:10.1016/j.ecolind.2013.09.012. Klimes, L., 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl. Ecol. 4, 317-328. https://doi.org/10.1078/1439-1791-00163. Kluge, J., Worm, S., Lange, S., et al., 2017. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711-1722. https://doi.org/10.1002/ecs2.2945. Korner, C., 2003. Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. Krishna, M., Winternitz, J., Garkoti, S.C., et al., 2021. Functional leaf traits indicate phylogenetic signals in forests across an elevational gradient in the central Himalaya. J. Plant Res. 134, 753-764. https://doi.org/10.1007/s10265-021-01289-1. Laughlin, D.C., 2023. Plant Strategies:The demographic Consequences of Functional Traits in Changing Environments. Oxford University Press, Oxford, UK. Li, L., Xu, X., Qian, H., et al., 2022. Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya. Divers. Distrib. 28, 2534-2548. https://doi.org/10.1111/ddi.13513. Liang, J., Ding, Z., Lie, G., et al., 2023. Patterns and drivers of phylogenetic diversity of seed plants along an elevational gradient in the central Himalaya. Glob. Ecol. Conserv. 47, e02661. https://doi.org/10.1016/j.gecco.2023.e02661. Liu, X., Chen, B., 2000. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729-1742. https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y. Liu, J., Moller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. https://doi.org/10.1111/nph.12336. Liu, J., Luo, Y.H., Li, D.Z., et al., 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions:retrospect and prospect. Biodivers. Sci. 25, 163-174. Liu, J., Milne, R.I., Cadotte, M.W., et al., 2018. Protect Third Pole's fragile ecosystem. Science 362, 1368.-1368. https://doi.org/10.1126/science.aaw0443. Liu, J., Milne, R.I., Zhu, G.F., et al., 2022. Name and scale matters:clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global Planet. Change 215, 103893. https://doi.org/10.1016/j.gloplacha.2022.103893. Liu, F.L., Mambo, W.W., Liu, J., et al., 2025. Spatiotemporal range dynamics and conservation optimization for endangered medicinal plants in the Himalaya. Glob. Ecol. Conserv. 57, e03390. Luo, D., Yue, J.P., Sun, W.G., et al., 2016a. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:first insights from comparative phylogeography of four perennial herbs. J. Biogeogr. 43, 31-43. https://doi.org/10.1111/jbi.12610. Luo, Y., Liu, J., Tan, S., et al., 2016b. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China. Plant Divers. 38, 303-311. https://doi.org/10.1016/j.pld.2016.11.002. Luo, Y.H., Cadotte, M.W., Burgess, K.S., et al., 2019a. Forest community assembly is driven by different strata-dependent mechanisms along an elevational gradient. J. Biogeogr. 46, 2174-2187. https://doi.org/10.1111/jbi.13669. Luo, Y.H., Cadotte, M.W., Burgess, K.S., et al., 2019b. Greater than the sum of the parts:how the species composition in different forest strata influence ecosystem function. Ecol. Lett. 22, 1449-1461. https://doi.org/10.1111/ele.13330. Luo, Y.H., Ma, L.L., Seibold, S., et al., 2023. The diversity of mycorrhiza-associated fungi and trees shapes subtropical mountain forest ecosystem functioning. J. Biogeogr. 50, 715-729. https://doi.org/10.1111/jbi.14563. Luo, Y.H., Ma, L.L., Cadotte, M.W., et al., 2024. Testing the ectomycorrhizal-dominance hypothesis for ecosystem multifunctionality in a subtropical mountain forest. New Phytol. 243, 2401-2415. https://doi.org/10.1111/nph.20003. Ma, Z., Chang, S.X., Bork, E.W., et al., 2020. Climate change and defoliation interact to affect root length across northern temperate grasslands. Funct. Ecol. 34, 2611-2621. https://doi.org/10.1111/1365-2435.13669. Ma, L.L., Seibold, S., Cadotte, M.W., et al., 2024. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. Sci. Total Environ. 935, 173343. https://doi.org/10.1016/j.scitotenv.2024.173343. Maharjan, S.K., Sterck, F.J., Dhakal, B.P., et al., 2021. Functional traits shape tree species distribution in the Himalaya. J. Ecol. 109, 3818-3834. https://doi.org/10.1111/1365-2745.13759. Maharjan, S.K., Sterck, F.J., Raes, et al., 2023. Climate change induced elevational range shifts of Himalayan tree species. Biotropica 55, 53-69. https://doi.org/10.1111/btp.13159. Malik, Z.A., Pandey, R., Bhatt, A.B., 2016. Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. J. Mt. Sci. 13, 69-82. https://doi.org/10.1007/s11629-015-3533-7. Manish, K., 2021. Species richness, phylogenetic diversity and phylogenetic structure patterns of exotic and native plants along an elevational gradient in the Himalaya. Ecol. Process 10, 1-13. https://doi.org/10.1186/s13717-021-00335-z. Manish, K., Pandit, M.K., 2018. Geophysical upheavals and evolutionary diversification of plant species in the Himalaya. PeerJ 6, e5919. https://doi.org/10.7717/peerj.5919. Maren, I.E., Karki, S., Prajapati, C., et al., 2015. Facing north or south:does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J. Arid Environ. 121, 112-123. https://doi.org/10.1016/j.jaridenv.2015.06.004. McCain, C.M., Grytnes, J.A., 2010. Elevational gradients in species richness. In:Encyclopedia of Life Sciences (ELS). Hoboken. John Wiley & Sons, Ltd. Pp. 1-10 https://doi.org/10.1002/9780470015902.a0022548. Mehrotra, R.C., Liu, X.Q., Li, C.S., et al., 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Rev. Palaeobot. Palynol. 135, 145-163. https://doi.org/10.1016/j.revpalbo.2005.03.004. Mehta, N., Chawla, A., 2024. Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. Photosynth. Res. 159, 29-59. https://doi.org/10.1007/s11120-023-01071-5. Miller, J.T., Jolley-Rogers, G., Mishler, B.D., et al., 2018. Phylogenetic diversity is a better measure of biodiversity than taxon counting. J. Systemat. Evol. 56, 663-667. https://doi.org/10.1111/jse.12436. Mukherjee, S., 2015. A review on out-of-sequence deformation in the Himalaya. In:Mukherjee, S, et al. (Eds.), Tectonics of the Himalaya. Geological Society of London, https://doi.org/10.1144/SP1412.1113. Nag, A., Ahuja, P.S., Sharma, R.K., 2015. Genetic diversity of high-elevation populations of an endangered medicinal plant. AoBP. 7, plu076. https://doi.org/10.1093/aobpla/plu076. Opgenoorth, L., Vendramin, G.G., Mao, K.S., et al., 2010. Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. New Phytol. 185, 332-342. https://doi.org/10.1111/j.1469-8137.2009.03007.x. Pandit, M.K., Manish, K., Koh, L.P. 2014. Dancing on the roof of the world:ecological transformation of the Himalayan landscape. Bioscience 64, 980-992. https://doi.org/10.1093/biosci/biu152. Pauls, S.U., Nowak, C., Balint, M., et al., 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925-946. https://doi.org/10.1111/mec.12152. Peppe, D.J., Royer, D.L., Cariglino, B., et al., 2011. Sensitivity of leaf size and shape to climate:global patterns and paleoclimatic applications. New Phytol. 190, 724-739. https://doi.org/10.1111/j.1469-8137.2010.03615.x. Petchey, O.L., Gaston, K.J., 2006. Functional diversity:back to basics and looking forward. Ecol. Lett. 9, 741-758. https://doi.org/10.1111/j.1461-0248.2006.00924.x. Poudel, R.C., Moller, M., Liu, J., et al., 2014. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya:implications for conservation of their highly fragmented populations. Divers. Distrib. 20, 1270-1284. https://doi.org/10.1111/ddi.12237. Prasad, M., 1993. Siwalik (Middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Rev. Palaeobot. Palynol. 76, 49-82. https://doi.org/10.1016/0034-6667(93)90080-E. Qian, H., Grau, O., 2025. Geographic patterns and ecological causes of phylogenetic structure in mosses along an elevational gradient in the central Himalaya. Plant Divers. 47, 98-105. https://doi.org/10.1016/j.pld.2024.07.005. Qian, H., Sandel, B., Deng, T., et al., 2019. Geophysical, evolutionary and ecological processes interact to drive phylogenetic dispersion in angiosperm assemblages along the longest elevational gradient in the world. Bot. J. Linn. Soc. 190, 333-344. https://doi.org/10.1093/botlinnean/boz030. Qian, H., Kessler, M., Vetaas, O.R., 2022. Pteridophyte species richness in the central Himalaya is limited by cold climate extremes at high elevations and rainfall seasonality at low elevations. Ecol. Evol. 12, e8958. https://doi.org/10.1002/ece3.8958. Qin, S.Y., Zuo, Z.-Y., Guo, C., et al., 2023. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol. Ecol. 32, 2850-2868. https://doi.org/10.1111/mec.16904. Qiong, L., Zhang, W., Wang, H., et al., 2017. Testing the effect of the Himalayan mountains as a physical barrier to gene flow in Hippophae tibetana Schlect. (Elaeagnaceae). PLoS One 12, e0172948. https://doi.org/10.1371/journal.pone.0172948. Qiu, J., 2008. The third Pole. Nature 454, 393-396. https://doi.org/10.1038/454393a. QXPCSE (The Qinghai-Xizang Plateau Comprehensive Scientific Expedition of Chinese Academy of Sciences), 1988. The Series of the Scientific Expedition to the Qinghai-Xizang Plateau:Vegetation of Xizang (Tibet). Science Press, Beijing, China. Rana, S.K., Price, T.D., Qian, H., 2019. Plant species richness across the Himalaya driven by evolutionary history and current climate. Ecosphere 10, e02945. https://doi.org/10.1002/ecs2.2945. Rawat, M., Arunachalam, K., Arunachalam, A., et al., 2020. Relative contribution of plant traits and soil properties to the functioning of a temperate forest ecosystem in the Indian Himalaya. Catena 194, 104671. https://doi.org/10.1016/j.catena.2020.104671. Rawat, M., Arunachalam, K., Arunachalam, A., et al., 2021. Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem. Sci. Rep. 11:23807. https://doi.org/10.1038/s41598-021-03235-6. Read, Q.D., Moorhead, L.C., Swenson, N.G., et al., 2014. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37-45. https://doi.org/10.1111/1365-2435.12162. Ren, G., Mateo, R.G., Liu, J., et al., 2017. Genetic consequences of Quaternary climatic oscillations in the Himalayas:Primula tibetica as a case study based on restriction site-associated DNA sequencing. New Phytol. 213, 1500-1512. https://doi.org/10.1111/nph.14221. Roy, S., Marndi, B.C., Mawkhlieng, B., et al., 2016. Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India. BMC Genet. 17, 107. https://doi.org/10.1007/s00438-021-01844-4. Searle, M.P., Treloar, P.J., 2019. Introduction to Himalayan tectonics:a modern synthesis. In:Searle, MP, Treloar, PJ (Eds.), Introduction to Himalayan Tectonics:A Modern Synthesis. Geological Society of London, London, UK, https://doi.org/10.1144/SP483-2019-20. Shah, S.S., Shrestha, K.K., Scheidegger, C., 2019. Variation in plant functional traits along altitudinal gradient and land use types in Sagarmatha National Park and buffer zone, Nepal. Am. J. Plant Sci. 10, 595-614. https://doi.org/10.4236/ajps.2019.104043. Sharma, S., Chhabra, M., Singh, S.K., et al., 2022. Genetic diversity and population structure of critically endangered Dactylorhiza hatagirea (D. Don) Soo from North-Western Himalayas and implications for conservation. Sci. Rep. 12, 11699. https://doi.org/10.1038/s41598-022-15742-1. Sharma, M.K., Hopak, N.E., Chawla, A., 2024. Alpine plant species converge towards adopting elevation-specific resource-acquisition strategy in response to experimental early snow-melting. Sci. Total Environ. 907, 167906. https://doi.org/10.1016/j.scitotenv.2023.167906. Shooner, S., Davies, T.J., Saikia, P., et al., 2018. Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere 9, e02157. https://doi.org/10.1002/ecs2.2157. Shrestha, A.B., Wake, C.P., Mayewski, P.A., et al., 1999. Maximum temperature trends in the Himalaya and its vicinity:an analysis based on temperature records from Nepal for the period 1971-94. J. Clim. 12, 2775-2786. https://doi.org/10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2. Shrestha, M., Dyer, A.G., Bhattarai, P., et al., 2014. Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. J. Ecol. 102, 126-135. https://doi.org/10.1111/1365-2745.12185. Sigdel, S.R., Liang, E., Rokaya, M.B., et al., 2023. Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalaya. Funct. Ecol. 37, 383-394. https://doi.org/10.1111/1365-2435.14226. Singh, D.K., Pusalkar, P.K., 2020. Floristic diversity of the Indian Himalaya. In:Dar, G.H., Khuroo, A.A. (Eds.), Biodiversity of the Himalaya:Jammu and Kashmir State. Springer Nature, Singapore, pp. 93-126. https://doi.org/10.1007/978-981-32-9174-4_5. Singh, J.S., Singh, S.P., 1987. Forest vegetation of the Himalaya. Bot. Rev. 53, 80-192. Singh, S.P., Gumber, S., Singh, R.D., et al., 2020. How many tree species are in the Himalayan treelines and how are they distributed?. Trop. Ecol. 61, 317-327. https://doi.org/10.1007/s42965-020-00093-7. Singh, R., Rawat, M., Pandey, R., 2023a. Quantifying leaf-trait co-variation and strategies for ecosystem functioning of Quercus leucotrichophora (Ban Oak) forest in Himalaya. Ecol. Indic. 150, 110212. https://doi.org/10.1016/j.ecolind.2023.110212. Singh, R., Rawat, M., Chand, T., et al., 2023b. Phenological variations in relation to climatic variables of moist temperate forest tree species of western Himalaya, India. Heliyon 9, e16563. https://doi.org/10.1016/j.heliyon.2023.e16563. Spicer, R.A., 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Divers. 39, 233-244. https://doi.org/10.1016/j.pld.2017.09.001. Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region:an evolving story. Plant Divers. 4, 229-254. https://doi.org/10.1016/j.pld.2020.06.011. Spicer, R.A., Farnsworth, A., Su, T., et al., 2025. The progressive Co-evolutionary development of the pan-Tibetan highlands, the Asian monsoon system and Asian biodiversity. Geological Society, London, Special Publications 549, SP549-2023-2180. https://doi.org/10.1144/sp549-2023-180. Srinivasan, U., Tamma, K., Ramakrishnan, U., 2014. Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Global Ecol. Biogeogr. 23, 52-60. https://doi.org/10.1111/geb.12082. Sun, H., Zhou, Z.K., 2002. Seed Plants of the Big Bend Gorge of Yalu Tsangpo in SE Tibet, E Himalayas. Yunnan Science and Technology Press, Kunming, China. Telwala, Y., Brook, B.W., Manish, K., et al., 2013. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8, e57103. https://doi.org/10.1371/journal.pone.0057103. Thakur, D., 2019. Functional Ecology of High-Altitude Vegetation of Western Himalaya. Ph.D. dissertation, CSIR-IHBT, Palampur, India. Thakur, D., Chawla, A., 2019. Functional diversity along elevational gradients in the high-altitude vegetation of the western Himalaya. Biodivers. Conserv. 28, 1977-1996. https://doi.org/10.1007/s10531-019-01728-5. Vanneste, T., Valdes, A., Verheyen, K., et al., 2019. Functional trait variation of forest understorey plant communities across Europe. Basic Appl. Ecol. 34, 1-14. https://doi.org/10.1016/j.baae.2018.09.004. Vetaas, O.R., Grytnes, J.A., 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11, 291-301. https://doi.org/10.1046/j.1466-822X.2002.00297.x. Villeger, S., Mason, N.W., Mouillot, D., 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290-2301. https://doi.org/10.1890/07-1206.1. Wambulwa, M.C., Milne, R., Wu, Z.Y., et al., 2021. Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot:current knowledge and future perspectives. Ecol. Evol. 11, 10794-10812. https://doi.org/10.1002/ece3.7906. Wambulwa, M.C., Zhu, G.-F., Luo, Y.-H., et al., 2025. Incorporating genetic diversity to optimize the plant conservation network in the third Pole. Glob. Change Biol. 31, e70122. https://doi.org/10.1111/gcb.70122. Wang, Y.L., Li, L., Paudel, B.R., et al., 2024. Genomic insights into high-altitude adaptation:a comparative analysis of Roscoea alpina and R. purpurea in the Himalayas. Int. J. Mol. Sci. 25, e2265. https://doi.org/10.3390/ijms25042265. Wani, S.A., Khuroo, A.A., Zaffar, N., et al., 2024. Data synthesis for biodiversity science:a database on plant diversity of the Indian Himalayan Region. Biodivers. Conserv. 33, 3377-3397. https://doi.org/10.1007/s10531-024-02784-2. Xing, Y., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U. S. A. 114, E3444-E3451. https://doi.org/10.1073/pnas.1616063114. Xu, J., Grumbine, R.E., Shrestha, A., et al., 2009. The melting Himalaya:cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520-530. https://doi.org/10.1111/j.1523-1739.2009.01237.x. Xu, T., Abbott, R.J., Milne, R.I., et al., 2010. Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evol. Biol. 10, 1-10. https://doi.org/10.1186/1471-2148-10-194. Yan, Y., Yang, X., Tang, Z., 2013. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai Tibetan Plateau. Ecol. Evol. 3, 4584-4595. https://doi.org/10.1002/ece3.847. Yan, L.J., Fan, P.Z., Wambulwa, M.C., et al., 2024. Human-associated genetic landscape of walnuts in the Himalaya:implications for conservation and utilization. Divers. Distrib. 30, e13809. https://doi.org/10.1111/ddi.13809. Ye, L.J., Shavvon, R.S., Qi, H.L., et al., 2024. Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia. Plant Divers. 46, 600-610. Yu, H., Miao, S., Xie, G., et al., 2020. Contrasting floristic diversity of the Hengduan mountains, the Himalayas and the Qinghai-Tibet plateau sensu stricto in China. Front. Ecol. Evol. 8, 136. https://doi.org/10.3389/fevo.2020.00136. Zhang, X.S., 1978. The plateau zonality of vegetation in Xizang. Acta Bot. Sin. 20, 140-149. Zhang, X., Liu, L., Chen, X., et al., 2021. GLC_FCS30:global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 13, 2753-2776. https://doi.org/10.5194/essd-13-2753-2021. Zhao, J.L., Paudel, B.R., Yu, X.Q., et al., 2021. Speciation along the elevation gradient:divergence of Roscoea species within the south slope of the Himalayas. Mol. Phylogenet. Evol. 164, 107292. https://doi.org/10.1016/j.ympev.2021.107292. Zhao, F., Yang, T., Luo, C., et al., 2022. Comparing elevational patterns of taxonomic, phylogenetic, and functional diversity of woody plants reveal the asymmetry of community assembly mechanisms on a mountain in the Hengduan Mountains Region. Front. Ecol. Evol. 10, 869258. https://doi.org/10.3389/fevo.2022.869258. Zhu, W., Ding, L., Ji, Y., et al., 2022. Subduction evolution controlled Himalayan orogenesis:implications from 3-D subduction modeling. Appl. Sci. 12, 7413. https://doi.org/10.3390/app12157413. |
[1] | Jie Li (李捷), Xiao Pan Pang (庞晓攀), Zheng Gang Guo (郭正刚). Assessing the contributions of site and species to plant beta diversity in alpine grassland ecosystems [J]. Plant Diversity, 2025, 47(04): 633-642. |
[2] | Jianchao Liang, Zhifeng Ding, Ganwen Lie, Zhixin Zhou, Zhixiang Zhang, Huijian Hu. Climate-driven environmental filtering determines hump-shaped elevational pattern of seed plant beta diversity in the central Himalayas [J]. Plant Diversity, 2025, 47(02): 264-272. |
[3] | Hong Qian, Oriol Grau. Geographic patterns and ecological causes of phylogenetic structure in mosses along an elevational gradient in the central Himalaya [J]. Plant Diversity, 2025, 47(01): 98-105. |
[4] | Zhiliang Yao, Xia Pan, Xin Yang, Xiaona Shao, Bin Wang, Yun Deng, Zhiming Zhang, Qiaoming Li, Luxiang Lin. Canopy structural heterogeneity drives α and β species-genetic diversity correlations in a Chinese subtropical forest [J]. Plant Diversity, 2025, 47(01): 106-114. |
[5] | José Luiz Alves Silva, Alexandre Souza, Angela Pierre Vitória. Detection of functional diversity gradients and their geoclimatic filters is sensitive to data types (occurrence vs. abundance) and spatial scales (sites vs. regions) [J]. Plant Diversity, 2024, 46(06): 732-743. |
[6] | Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu. Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia [J]. Plant Diversity, 2024, 46(05): 600-610. |
[7] | Yixian Li, Xuyao Zhao, Manli Xia, Xinzeng Wei, Hongwei Hou. Temperature is a cryptic factor shaping the geographical pattern of genetic variation in Ceratophyllum demersum across a subtropical freshwater lake [J]. Plant Diversity, 2024, 46(05): 630-639. |
[8] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains [J]. Plant Diversity, 2024, 46(05): 661-670. |
[9] | Miao-Miao Li, Muditha K. Meegahakumbura, Moses C. Wambulwa, Kevin S. Burgess, Michael Möller, Zong-Fang Shen, De-Zhu Li, Lian-Ming Gao. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica) [J]. Plant Diversity, 2024, 46(02): 229-237. |
[10] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America [J]. Plant Diversity, 2023, 45(04): 369-384. |
[11] | Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera. Siwalik plant megafossil diversity in the Eastern Himalayas:A review [J]. Plant Diversity, 2023, 45(03): 243-264. |
[12] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[13] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[14] | Moses C. Wambulwa, Peng-Zhen Fan, Richard Milne, Zeng-Yuan Wu, Ya-Huang Luo, Yue-Hua Wang, Hong Wang, Lian-Ming Gao, Zuo-Ying Xiahou, Ye-Chuan Jin, Lin-Jiang Ye, Zu-Chang Xu, Zhi-Chun Yang, De-Zhu Li, Jie Liu. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement [J]. Plant Diversity, 2022, 44(06): 530-541. |
[15] | Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm [J]. Plant Diversity, 2022, 44(05): 481-491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||