Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 468-480.DOI: 10.1016/j.pld.2021.12.006
• Research paper • Previous Articles Next Articles
Boniface K. Ngaregaa,b,c,d, John M. Nzeia,b,c, Josphat K. Sainaa,b,c,d, Marwa Waseem A. Halmye, Jin-Ming Chena,b, Zhi-Zhong Lia,b
Received:
2021-05-08
Revised:
2021-12-28
Online:
2022-10-14
Published:
2022-09-25
Supported by:
Boniface K. Ngaregaa,b,c,d, John M. Nzeia,b,c, Josphat K. Sainaa,b,c,d, Marwa Waseem A. Halmye, Jin-Ming Chena,b, Zhi-Zhong Lia,b
通讯作者:
Zhi-Zhong Li,E-mail:lizhizhong@wbgcas.cn
基金资助:
Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Diversity, 2022, 44(05): 468-480.
Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Diversity, 2022, 44(05): 468-480.
[1] Aiello L.M.E., Boria, R.A., Radosavljevic, A., et al., 2015. spThin:An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541-545 [2] Alahuhta, J., Antikainen, H., Hjort, J., et al., 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. J. Ecol. 108, 1262-1275 [3] Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models:prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232 [4] Austin, M.P. 2002. Spatial prediction of species distribution:an interface between ecological theory and statistical modeling. Ecol. Modell. 157, 101-118 [5] Bailie E.M., Hihon-Taylor C., Stuart SN, eds, 2004. IUCN Red List of Threatened Species:A Global Species Assessment. Cambridge (United Kingdom):IUCN [6] Barbet-Massin, M., Jiguet, F., Albert, C. H., et al., 2012. Selecting pseudo-absences for species distribution models:how, where and how many? Methods Ecol. Evol. 3, 327-338 [7] Butchart, S.H., Walpole, M., Collen, B., et al., 2010. Global biodiversity:indicators of recent declines. Science 328, 1164-1168 [8] Cave, L., Beekman, H.E., Weaver, J., 2003. Impact of Climate Change on Groundwater Recharge Estimation. In:Xu, Y. and Beekman, H.E.(eds.) Groundwater recharge estimation in southern Africa. UNESCO, Paris. 189-197 [9] Corlett, R.T. 2016. Plant diversity in a changing world:status, trends, and conservation needs. Plant Divers. 38, 10-16 [10] Cook C.D., Urmi-Konig K., 1984. A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat. Bot. 20, 131-177 [11] Cook, C.D., Symoens, J.J., Urmi-Konig, K., 1983. A revision of the genus Ottelia (Hydrocharitaceae) I. Generic considerations. Aquat. Bot. 18, 263-274 [12] Crossley, M.N., Dennison, W.C., Williams, R.R., et al., 2002. The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia 489, 63-70 [13] De Dominicis, F., Pallini, C., Annalisa, S., 2015. Rivers, Dams and Large-scale Hydraulic Works in Post-colonial Africa. Africa's Giants, 148-161 [14] De Wit, M., Stankiewicz, J., 2006. Changes in surface water supply across Africa with predicted climate change. Science 311, 1917-1921 [15] Duclos, T.R., DeLuca, W.V., King, D.I., 2019. Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian mountains. Divers. Distrib. 25, 1670-1683 [16] Elith, J., Leathwick, J.R., 2009. Species distribution models:ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677-697 [17] Elith, J., Phillips, S.J., Hastie, T., et al., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57 [18] Fan, X.R., Njeri, H.K., Li, W., et al., 2019. Abundant historical gene flow within and among river systems for populations of Ottelia acuminata var. jingxiensis, an endangered macrophyte from southwest China. Aquat. Bot. 157, 1-9 [19] Feeley, K. J., Silman, M. R., 2011. Keep collecting:accurate species distribution modeling requires more collections than previously thought. Divers. Distrib. 17, 1132-1140 [20] Ferrer-Gallego, P.P., Boisset, F., Simpson, D.A., 2016. Typification of the African endemic plant Ottelia exserta (Hydrocharitaceae). Kew Bull. 71, 32 [21] Fick, S. E., Hijmans, R. J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315 [22] Garcia, G.J., Heino, J., Baastrup-Spohr, L., et al., 2020. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 723, 138021 [23] Gent, P.R., Danabasoglu, G., Donner, L.J., et al., 2011. The community climate system model version 4. J. Clim. 24, 4973-4991 [24] Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution Models:With Applications in R; Cambridge University Press:Cambridge, UK. ISBN 0521765137 [25] Guo, J.L., Yu, Y.H., Zhang, J.W., et al., 2019. Conservation strategy for aquatic plants:endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers. Conserv. 28, 1533-1548 [26] Hanski, I., Zurita, G.A., Bellocq, M.I., et al., 2013. Species-fragmented area relationship. Proc. Natl. Acad. Sci. U.S.A. 110, 12715-12720 [27] Hardin, G., 1960. The competitive exclusion principle. Science 131, 1292-1297 [28] Heikkinen, R. K., Luoto, M., Araujo, M. B., et al., 2006. Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog. Phys. Geog. 30, 751-777 [29] Heneidy, S.Z., Halmy, M.W.A., Fakhry, A.M., et al., 2019. The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios. Aquat. Ecol. 53, 509-528 [30] Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., et al., 2005. Confronting a biome crisis:global disparities of habitat loss and protection. Ecol. Lett. 8, 23-29 [31] Iannella, M., D'Alessandro, P., Longo, S., et al., 2019. New records and potential distribution by Ecological Niche Modeling of Monoxia obesula in the Mediterranean area. Bull. Insectol. 71, 135-142 [32] Intergovernmental Panel on Climate Change. Part B:Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014:Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., et al., Eds.; Cambridge University Press:Cambridge, UK; New York, NY, USA, 2014, 1-669 [33] Ito, Y., Tanaka, N., Barfod, A. S., et al., 2019. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J. Plant Res. 132, 335-344 [34] Kennedy, M.P., Lang, P., Grimaldo, J.T., et al., 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers:Zambia as a case study. Aquat. Bot. 124, 19-28 [35] Lewis, L.A., Berry, L., 1988. African environments and resources. Unwin Hayman Ltd., London, 404 [36] Li, Z.Z., Lu, M.X., Gichira, A.W., et al., 2019. Genetic diversity and population structure of Ottelia acuminata var. jingxiensis, an endangered endemic aquatic plant from southwest China. Aquat. Bot. 152, 20-26 [37] Li, Z.Z., Ngarega, B.K., Lehtonen, S., et al., 2020a. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J. Plant Res. 133, 372-381 [38] Li, Z.Z., Lehtonen, S., Martins, K., et al., 2020b. Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae):Implications for historical biogeography. Mol. Phylogenet. Evol. 152, 106939 [39] Liu, C., Newell, G., White, M., 2016. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337-348 [40] McLaughlin, B.C., Ackerly, D.D., Klos, P.Z., et al., 2017. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941-2961 [41] McSweeney, C.F., Jones, R.G., Lee, R.W., et al., 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237-3260 [42] Misra, A.K. 2014. Climate change and challenges of water and food security. Int. J. Sustain. Built. Environ. 3, 153-165 [43] Monsarrat, S., Jarvie, S., Svenning, J.C., 2019. Anthropocene refugia:integrating history and predictive modelling to assess the space available for biodiversity in a human-dominated world. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374, 20190219 [44] Muscarella, R., Galante, P.J., Soley G.M., et al., 2014. ENM eval:An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198-1205 [45] Murphy, K., Efremov, A., Davidson, T.A., et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot. 158, 103-127 [46] Ngarega, B.K., Gichira, A.W., Karichu, M.J., et al., 2021a. Genetic diversity and population structure of Ottelia ulvifolia (Hydrocharitaceae) from three freshwater ecoregions in Zambia. Aquat. Bot. 103412 [47] Ngarega, B.K., Masocha, V.F., Schneider, H. 2021b. Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). Ecol. Inform. 65, 101419 [48] Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 26, 137-158 [49] Nyong, A., Niang-Diop, I., 2006. Impacts of climate change in the tropics:the African experience. Avoiding dangerous climate change, Cambridge University Press:Cambridge, UK, 237 [50] Nzei, J.M., Ngarega, B.K., Mwanzia, V.M., et al., 2021. The past, current, and future distribution modeling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquat. Bot. 103416 [51] Parmesan, C., Hanley, M.E., 2015. Plants and climate change:complexities and surprises. Ann. Bot. 116, 849-864 [52] Pennino, M.G., Coll, M., Albo-Puigserver, M., et al., 2020. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. 7, 622 [53] Phillips, S.J., Anderson, R.P., Schapire, RE, 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231-259 [54] Pressey, R.L., Cabeza, M., Watts, M.E., et al., 2007. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583-592 [55] Rissler, L.J., Apodaca, J.J., 2007. Adding more ecology into species delimitation:ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56, 924-942 [56] Radosavljevic, A., and Anderson, R.P., 2014. Making better Maxent models of species distributions:complexity, overfitting and evaluation. J. Biogeogr. 41, 629-643 [57] R-Core-Team, 2019. R:A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing [58] Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27-39 [59] Serdeczny, O., Adams, S., Baarsch, F., et al., 2017. Climate change impacts in Sub-Saharan Africa:from physical changes to their social repercussions. Reg. Environ. Change. 17, 1585-1600 [60] Shepard, D., 2019. Global warming:Severe consequences for Africa:New report projects greater temperature increases. Africa Renewal, 32, 34-34 [61] Symoens J.J., 2009. Hydrocharitaceae. Flora Zambesiaca 12, 31-32 [62] van Proosdij, A.S., Sosef, M.S., Wieringa, J.J., et al., 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542-552 [63] van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., 2011. The representative concentration pathways:an overview. Clim. Change 109, 5 [64] Walck, J.L., Hidayati, S.N., Dixon, K.W., et al., 2011. Climate change and plant regeneration from seed. Glob. Change Biol. 17, 2145-2161 [65] Wan, J.N., Mbari, N.J., Wang, S.W., et al., 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43, 117-124 [66] Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism:quantitative approaches to niche evolution. Evolution 62, 2868-2883 [67] Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools:a toolbox for comparative studies of environmental niche models. Ecography 33, 607-611 [68] Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent:The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335-342 [69] Wenger, S.J., Olden, J.D., 2012. Assessing transferability of ecological models:an underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260-267 [70] Wiens, J.J., Graham, C.H., 2005. Niche conservatism:integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539 [71] Wilson, K.A., McBride, M.F., Bode, M., et al., 2006. Prioritizing global conservation efforts. Nature 440, 337-340 [72] Zhang, P., Kuramae, A., Van Leeuwen, C.H., et al., 2020. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Front. Plant Sci. 11, 58 [73] Zhai, S.H., Yin, G.S., Yang, X.H., 2018. Population genetics of the endangered and wild edible plant Ottelia acuminata in southwestern China using novel SSR markers. Biochem. Genet. 56, 235-254 |
[1] | Hong Qian, Shenhua Qian. Global patterns of taxonomic and phylogenetic endemism in liverwort assemblages [J]. Plant Diversity, 2025, 47(01): 82-88. |
[2] | Hai-Yao Chen, Zhi-Rong Zhang, Xin Yao, Ji-Dong Ya, Xiao-Hua Jin, Lin Wang, Lu Lu, De-Zhu Li, Jun-Bo Yang, Wen-Bin Yu. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae) [J]. Plant Diversity, 2024, 46(04): 448-461. |
[3] | Wanwalee Kongjarat, Lu Han, Amy Ny Aina Aritsara, Shu-Bin Zhang, Gao-Juan Zhao, Yong-Jiang Zhang, Phisamai Maenpuen, Ying-Mei Li, Yi-Ke Zou, Ming-Yi Li, Xue-Nan Li, Lian-Bin Tao, Ya-Jun Chen. Hydraulic properties and drought response of a tropical bamboo (Cephalostachyum pergracile) [J]. Plant Diversity, 2024, 46(03): 406-415. |
[4] | Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian. Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera [J]. Plant Diversity, 2024, 46(02): 149-157. |
[5] | Vincent Okelo Wanga, Boniface K. Ngarega, Millicent Akinyi Oulo, Elijah Mbandi Mkala, Veronicah Mutele Ngumbau, Guy Eric Onjalalaina, Wyclif Ochieng Odago, Consolata Nanjala, Clintone Onyango Ochieng, Moses Kirega Gichua, Robert Wahiti Gituru, Guang-Wan Hu. Projected impacts of climate change on the habitat of Xerophyta species in Africa [J]. Plant Diversity, 2024, 46(01): 91-100. |
[6] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[7] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
[8] | Jun-Nan Wan, Ndungu J. Mbari, Sheng-Wei Wang, Bing Liu, Brian N. Mwangi, Jean R. E. Rasoarahona, Hai-Ping Xin, Ya-Dong Zhou, Qing-Feng Wang. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar [J]. Plant Diversity, 2021, 43(02): 117-124. |
[9] | Richard T. Corlett. Safeguarding our future by protecting biodiversity [J]. Plant Diversity, 2020, 42(04): 221-228. |
[10] | Santosh Kumar Rana, Hum Kala Rana, Krishna Kumar Shrestha, Suresh Sujakhu, Sailesh Ranjitkar. Determining bioclimatic space of Himalayan alder for agroforestry systems in Nepal [J]. Plant Diversity, 2018, 40(01): 1-18. |
[11] | Timothy J. Entwisle, Chris Cole, Peter Symes. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change [J]. Plant Diversity, 2017, 39(06): 338-347. |
[12] | Zhe Ren a, b, Hua Peng a, *, Zhen-Wen Liu a, **. The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity [J]. Plant Diversity, 2016, 38(03): 142-148. |
[13] | Roy Turkington, William L. Harrower. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China [J]. Plant Diversity, 2016, 38(01): 1-10. |
[14] | LI Xiong-, YANG Shi-Hai-, YANG Yun-Qiang-, YIN Xin-, SUN Xu-Dong-, YANG Yong-Ping. Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought [J]. Plant Diversity, 2015, 37(4): 439-452. |
[15] | TANG Bo-Yan, CAO Guo-Xing, JIANG Wan-Ping. Niches and Interspecific Association of Dominant Tree Populations of Taxus chinensis in Wuling Damu Mountain Nature Reserve [J]. Plant Diversity, 2014, 36(05): 668-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||