Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 492-498.DOI: 10.1016/j.pld.2021.11.006
• Research paper • Previous Articles Next Articles
Romina Vidal-Russella, Mariana Tadeya, Romana Urfusováb, Tomáš Urfusb, Cintia Paola Soutoa
Received:
2021-05-10
Revised:
2021-11-18
Online:
2022-10-14
Published:
2022-09-25
Supported by:
Romina Vidal-Russella, Mariana Tadeya, Romana Urfusováb, Tomáš Urfusb, Cintia Paola Soutoa
通讯作者:
Cintia Paola Souto,E-mail:cintiap.souto@gmail.com
基金资助:
Romina Vidal-Russell, Mariana Tadey, Romana Urfusová, Tomáš Urfus, Cintia Paola Souto. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America[J]. Plant Diversity, 2022, 44(05): 492-498.
Romina Vidal-Russell, Mariana Tadey, Romana Urfusová, Tomáš Urfus, Cintia Paola Souto. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America[J]. Plant Diversity, 2022, 44(05): 492-498.
[1] Barbour, M. G. 1969. Patterns of genetic similarity between Larrea divaricata of North and South America. Amer. Midland Natur. 81, 54-67 [2] Bennett, M. D. 1987. Variation in genomic form in plants and its ecological implications. New phytol. 106, 177-200 [3] Bottini, M., Greizerstein, E., Aulicino, M. B., et al., 2000. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L.(Berberidaceae). Ann. Bot. 86, 565-573 [4] Bromham, L., Hua, X., Lanfear, R., et al., 2015. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185, 507-524 [5] Burnham, R. J., Graham, A. 1999. The history of neotropical vegetation:new developments and status. Ann. Mo. Bot. Gard. 86, 546-589 [6] Comai, L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836-846 [7] Davies, T. J., Savolainen, V., Chase, M. W., et al. 2004. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond., B, Biol. Sci. 271, 2195-2200 [8] De Bodt, S., Maere, S. Van de Peer, Y. 2005. Genome duplication and the origin of angiosperms. Trends Eco. Evol. 20, 591-597 [9] Dolezel, J., Greilhuber, J. Suda, J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233 [10] Ezcurra, E., Montana, C. Arizaga, S. 1991. Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology 72, 23-34 [11] Flenley, J. R. 2011. Ultraviolet insolation and the tropical rainforest:Altitudinal variations, Quaternary and recent change, extinctions, and the evolution of biodiversity. in:F. J. Bush M., Gosling W., Tropical Rainforest Responses to Climatic Change, Berlin, Heidelberg, pp. 241-258 [12] Goldie, X., Gillman, L., Crisp, M., et al. 2010. Evolutionary speed limited by water in arid Australia. Proc. R. Soc. Lond., B, Biol. Sci. 277, 2645-2653 [13] Grime, J. Mowforth, M. 1982. Variation in genome size-an ecological interpretation. Nature 299, 151-153 [14] Hamann, A., Wang, T., Spittlehouse, D. L., et al. 2013. A comprehensive, high-resolution database of historical and projected climate surfaces for western North America. BAMS 94, 1307-1309 [15] Hawkins, B. A., Field, R., Cornell, H. V., et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105-3117 [16] Hijmans, R., Cameron, S., Parra, J., et al. 2005. WorldClim, version 1.3. University of California, Berkeley [17] Hunziker, J., Palacios, R., De Valesi, A. G., et al. 1972. Species disjunctions in Larrea:evidence from morphology, cytogenetics, phenolic compounds, and seed albumins. Ann. Mo. Bot. Gard. 59, 224-233 [18] Hunziker, J. H. Comas, C. 2002. Larrea interspecific hybrids revisited (Zygophyllaceae). Darwiniana 40, 33-38 [19] Landis, J. B., Soltis, D. E., Li, Z., et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348-363 [20] Laport, R. G., Hatem, L., Minckley, R. L., et al. 2013. Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. J. Torrey Bot. Soc. 140, 349-363 [21] Laport, R. G., Minckley, R. L. Ramsey, J. 2012. Phylogeny and cytogeography of the North American creosote bush (Larrea tridentata, Zygophyllaceae). Syst. Bot. 37, 153-164 [22] Laport, R. G., Ng, J. 2017. Out of one, many:The biodiversity considerations of polyploidy. Am. J. Bot. 104, 1119-1121 [23] Laport, R. G., Ramsey, J. 2015. Morphometric analysis of the North American creosote bush (Larrea tridentata, Zygophyllaceae) and the microspatial distribution of its chromosome races. Plant Syst. Evol. 301, 1581-1599 [24] Leong-Skornickova, J., Sida, O., Jarolimova, V., et al. 2007. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann. Bot. 100, 505-526 [25] Lia, V. V., Confalonieri, V. A., Comas, C. I., et al. 2001. Molecular phylogeny of Larrea and its allies (Zygophyllaceae):reticulate evolution and the probable time of creosote bush arrival to North America. Mol. Phylo. Evol. 21, 309-320 [26] Maceira, N. O., Jacquard, P., Lumaret, R. 1993. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 124, 321-328 [27] Ohri, D., Kumar, A. Pal, M. 1986. Correlations between 2C DNA values and habit in Cassia (Leguminosae:Caesalpinioideae). Plant Syst. Evol. 153, 223-227 [28] Paruelo, J. M., Beltran, A., Jobbagy, E., et al., 1998. The climate of Patagonia:general patterns and controls on biotic processes. Ecologia austral 8, 085-101 [29] Petit, C. Thompson, J. D. 1999. Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol. Ecol. 13, 45-65 [30] Poggio, L. Naranjo, C. 1990. Contenido de ADN y evolucion en plantas superiores. Academia Nacional Ciencias Exactas Fisicas y Naturales, Buenos Aires, Argentina, Monografia 5, 27-37 [31] Poggio, L., Realini, M. F., Fourastie, M. F., et al. 2014. Genome downsizing and karyotype constancy in diploid and polyploid congeners:a model of genome size variation. AoB Plant 6, plu029 [32] Poggio, L., Rosato, M., Chiavarino, A. M., et al. 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann. Bot. 82, 107-115 [33] Price, H. J. 1988. DNA content variation among higher plants. Ann. Mo. Bot. Gard. 75, 1248-1257 [34] Raven, P. H. 1972. Plant species disjunctions:a summary. Ann. Mo. Bot. Gard. 59, 234-246 [35] Rice, A., Smarda, P., Novosolov, M., et al., 2019. The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265-273 [36] Rohde, K. 1992. Latitudinal Gradients in Species Diversity:The Search for the Primary Cause. Oikos 65, 514-527 [37] Roig, F., Roig-Junent, S. Corbalan, V. 2009. Biogeography of the Monte desert. J. Arid Environ. 73, 164-172 [38] Schonswetter, P., Suda, J., Popp, M., et al., 2007. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 42, 92-103 [39] Severns, P. M. Liston, A. 2008. Intraspecific chromosome number variation:a neglected threat to the conservation of rare plants. Conserv. Biol. 22, 1641-1647 [40] Soltis, D. E., Albert, V. A., Leebens Mack, J., et al., 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336-348 [41] Soltis, D. E., Buggs, R. J., Doyle, J. J., et al., 2010. What we still don't know about polyploidy. Taxon 59, 1387-1403 [42] Soltis, D. E., Soltis, P. S., Schemske, D. W., et al., 2007. Autopolyploidy in angiosperms:have we grossly underestimated the number of species? Taxon 56, 13-30 [43] Soltis, P. S., Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051-7057 [44] Soltis, P. S., Soltis, D. E. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159-165 [45] Stebbins, G. L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Mo. Bot. Gard. 72, 824-832 [46] Tank, D. C., Eastman, J. M., Pennell, M. W., et al., 2015. Nested radiations and the pulse of angiosperm diversification:increased diversification rates often follow whole genome duplications. New Phytol. 207, 454-467 [47] Te Beest, M., Le Roux, J. J., Richardson, D. M., et al., 2012. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19-45 [48] Temsch, E. M., Temsch, W., Ehrendorfer-Schratt, L., et al., 2010. Heavy metal pollution, selection, and genome size:The Species of the Zerjav Study Revisited with Flow Cytometry. J. Bot. 1-11 [49] Wang, T., Hamann, A., Spittlehouse, D., et al., 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 [50] Willis, K. J., Bennett, K. D. Birks, H. J. B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36, 1630-1644 [51] Yang, T. W. 1970. Major chromosome races of Larrea divaricata in North America. J. Ariz. Acad. Sci. 6, 41-45 [52] Zhang, K., Wang, X. Cheng, F. 2019. Plant polyploidy:Origin, evolution, and its influence on crop domestication. Hortic. Plant J. 5, 231-239 |
[1] | Shuran Yao, Weigang Hu, Mingfei Ji, Abraham Allan Degen, Qiajun Du, Muhammad Adnan Akram, Yuan Sun, Ying Sun, Yan Deng, Longwei Dong, Haiyang Gong, Qingqing Hou, Shubin Xie, Xiaoting Wang, Jinzhi Ran, Bernhard Schmid, Qinfeng Guo, Karl J. Niklas, Jianming Deng. Distribution, species richness, and relative importance of different plant life forms across drylands in China [J]. Plant Diversity, 2025, 47(02): 273-281. |
[2] | Ya-Dong Qie, Qi-Wei Zhang, Scott A. M. McAdam, Kun-Fang Cao. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species [J]. Plant Diversity, 2024, 46(03): 395-405. |
[3] | Fa-Guo Wang, Ai-Hua Wang, Cheng-Ke Bai, Dong-Mei Jin, Li-Yun Nie, AJ Harris, Le Che, Juan-Juan Wang, Shi-Yu Li, Lei Xu, Hui Shen, Yu-Feng Gu, Hui Shang, Lei Duan, Xian-Chun Zhang, Hong-Feng Chen, Yue-Hong Yan. Genome size evolution of the extant lycophytes and ferns [J]. Plant Diversity, 2022, 44(02): 141-152. |
[4] | Guangyan Wang a, b, Yongping Yang b, *. The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size [J]. Plant Diversity, 2016, 38(04): 190-193. |
[5] | YE Lin-Jiang- , ZHANG Zhi-Rong-, SUN Zhi-Xia-, TIAN Shuang. The Determination of Nuclear DNA Content (2Cvalue) on Some Representative Genus and Species of Magnoliaceae [J]. Plant Diversity, 2015, 37(05): 605-610. |
[6] | ZHANG Ning-Ning, YANG Jing, SUN Wei-Bang. Genome Size Estimation of Viburnum (Adoxaceae) Species by Using Flow Cytometry* [J]. Plant Diversity, 2014, 36(06): 730-736. |
[7] | ZHANG Yi-Chi, LI Xia, GUO Zhen-Hua. The Effects of Preservation Methods and Storage Time on Estimating the Nuclear DNA Content (2C-value) of Bamboos [J]. Plant Diversity, 2014, 36(02): 227-232. |
[8] | ZHANG Fa-Qi-, FU Peng-Cheng-, GAO Qing-Bo-, LI Yi-Hu-, Gulzar Khan, CHEN Shi-Long. Comparative Study on Plant Seed Morphological Characteristics of Zygophyllaceae and Two New Families Separated from It [J]. Plant Diversity, 2013, 35(3): 280-284. |
[9] | LIN Mei-Zhen , DENG Hua , WEI Dong-Mei , TIAN Hui-Qiao. Change of DNA Content in Male and Female Gametes of Tobacco ( Nicotiana tabacum) [J]. Plant Diversity, 2009, 31(04): 303-308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||