Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (6): 52-52.DOI: 10.1007/s13659-025-00533-8
• Review • Next Articles
Luana Layse Camara de Almeida1, Sayoane Pessoa Fernandes1, Genil Dantas de Oliveira2,3, Marcelly da Silveira Silva1, Thalisson Amorim de Souza2, Valnês S. Rodrigues-Junior3, Samuel Paulo Cibulski1,4
Received:2025-06-06
Online:2026-01-12
Contact:
Samuel Paulo Cibulski Email:E-mail:samuel.cibulski@ufrn.br
Supported by:Luana Layse Camara de Almeida1, Sayoane Pessoa Fernandes1, Genil Dantas de Oliveira2,3, Marcelly da Silveira Silva1, Thalisson Amorim de Souza2, Valnês S. Rodrigues-Junior3, Samuel Paulo Cibulski1,4
通讯作者:
Samuel Paulo Cibulski Email:E-mail:samuel.cibulski@ufrn.br
基金资助:Luana Layse Camara de Almeida, Sayoane Pessoa Fernandes, Genil Dantas de Oliveira, Marcelly da Silveira Silva, Thalisson Amorim de Souza, Valnês S. Rodrigues-Junior, Samuel Paulo Cibulski. Harnessing Actinobacteria secondary metabolites for tuberculosis drug discovery: Historical trends, current status and future outlooks[J]. Natural Products and Bioprospecting, 2025, 15(6): 52-52.
Luana Layse Camara de Almeida, Sayoane Pessoa Fernandes, Genil Dantas de Oliveira, Marcelly da Silveira Silva, Thalisson Amorim de Souza, Valnês S. Rodrigues-Junior, Samuel Paulo Cibulski. Harnessing Actinobacteria secondary metabolites for tuberculosis drug discovery: Historical trends, current status and future outlooks[J]. 应用天然产物, 2025, 15(6): 52-52.
| [1] Dong M, Pfeiffer B, Altmann KH. Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov Today. 2017;22(3):585-91. https://doi.org/10.1016/j.drudis.2016.11.015. [2] Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, et al. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;20(10):1404. https://doi.org/10.3389/fmicb.2019.01404. [3] Fleming A. The discovery of penicillin. Br Med Bull. 1944;2(1):4-5. [4] Maithani D, Sharma A, Gangola S, Chaudhary P, Bhatt P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol Res. 2022;261: 127053. https://doi.org/10.1016/j.micres.2022.127053. [5] Hussain A, Hassan QP, Shouche YS. New approaches for antituberculosis leads from Actinobacteria. Drug Discov Today. 2020;25(12):2335-42. https://doi.org/10.1016/j.drudis.2020.10.005. [6] Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016;8(70):235-54. https://doi.org/10.1146/annurev-micro-102215-095748. [7] Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578-83. https://doi.org/10.1073/pnas.95.12.6578. [8] Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: progress and prospects. Microbiol Res. 2021;246: 126708. https://doi.org/10.1016/j.micres.2021.126708. [9] Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015;80(1):1-43. https://doi.org/10.1128/MMBR.00019-15. [10] Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res. 2020;231: 126374. https://doi.org/10.1016/j.micres.2019.126374. [11] Van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol. 2020;18(10):546-58. https://doi.org/10.1038/s41579-020-0379-y. [12] Hui ML, Tan LT, Letchumanan V, He YW, Fang CM, Chan KG, et al. The extremophilic actinobacteria: from microbes to medicine. Antibiotics. 2021;10(6):682. https://doi.org/10.3390/antibiotics10060682. [13] Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040-8. https://doi.org/10.1099/jmm.0.001232. [14] Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res. 2022;13(3):418-65. https://doi.org/10.3390/microbiolres13030031. [15] Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, et al. Streptomyces: the biofactory of secondary metabolites. Front Microbiol. 2022;29(13): 968053. https://doi.org/10.3389/fmicb.2022.968053. [16] Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment Streptomyces: potential sources for new antibacterial and anticancer drug leads? Int J Microbiol. 2019;1(2019):5283948. https://doi.org/10.1155/2019/5283948. [17] Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol. 2023;14(14):1285543. https://doi.org/10.3389/fmicb.2023.1285543. [18] Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71(3):495-548. https://doi.org/10.1128/MMBR.00005-07. [19] Saleem M, Hassan A, Li F, Lu Q, Ponomareva LV, Parkin S, et al. Bioprospecting of desert actinobacteria with special emphases on griseoviridin, mitomycin C and a new bacterial metabolite producing Streptomyces sp. PU-KB10-4. BMC Microbiol. 2023;23(1): 69. https://doi.org/10.1186/s12866-023-02770-8. [20] Del Carratore F, Hanko EK, Breitling R, Takano E. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr Opin Biotechnol. 2022;77: 102762. https://doi.org/10.1016/j.copbio.2022.102762. [21] Guerrero-Garzón JF, Zehl M, Schneider O, Rückert C, Busche T, Kalinowski J, et al. Streptomyces spp. from the marine sponge Antho dichotoma: analyses of secondary metabolite biosynthesis gene clusters and some of their products. Front Microbiol. 2020;11: 437. https://doi.org/10.3389/fmicb.2020.00437. [22] Pati?o AD, Montoya-Giraldo M, Quintero M, López-Parra LL, Blandón LM, Gómez-León J. Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Sci Rep. 2021;11(1): 16286. https://doi.org/10.1038/s41598-021-95788-9. [23] Sivakala KK, Gutiérrez-García K, Jose PA, Thinesh T, Anandham R, Barona-Gómez F, et al. Desert environments facilitate unique evolution of biosynthetic potential in Streptomyces. Molecules. 2021;26(3):588. https://doi.org/10.3390/molecules26030588. [24] Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural products: recent advances in the discovery of anti-tuberculosis agents. Bioorg Chem. 2024;151: 107699. https://doi.org/10.1016/j.bioorg.2024.107699. [25] World Health Organization. Global tuberculosis report 2024. Geneva: WHO; 2024. [26] Palanivel J, Sounderrajan V, Thangam T, Rao SS, Harshavardhan S, Parthasarathy K. Latent tuberculosis: challenges in diagnosis and treatment, perspectives, and the crucial role of biomarkers. Curr Microbiol. 2023;80: 392. https://doi.org/10.1007/s00284-023-03491-x. [27] Alsayed SSR, Gunosewoyo H. Tuberculosis: pathogenesis, current treatment regimens and new drug targets. Int J Mol Sci. 2023;24(6): 5202. https://doi.org/10.3390/ijms24065202. [28] Li SJ, Li YF, Song WM, Zhang QY, Liu SQ, Xu TT, et al. Population aging and trends of pulmonary tuberculosis incidence in the elderly. BMC Infect Dis. 2021;21(1): 302. https://doi.org/10.1186/s12879-021-05994-z. [29] Luies L, Preez I. The echo of pulmonary tuberculosis: mechanisms of clinical symptoms and other disease-induced systemic complications. Clin Microbiol Rev. 2020;33(4):e00036-e120. https://doi.org/10.1128/CMR.00036-20. [30] Ehrt S, Schnappinger D, Rhee KY. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(8):496-507. https://doi.org/10.1038/s41579-018-0013-4. [31] Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg. 2017;58(1):E9-12. [32] Herzog H. History of tuberculosis. Respiration. 1998;65(1):5-15. https://doi.org/10.1159/000029220. [33] Karakousis PC, Mooney G. Respiratory isolation for tuberculosis: a historical perspective. J Infect Dis. 2025;231(1):3-9. https://doi.org/10.1093/infdis/jiae477. [34] Armocida E, Martini M. Tuberculosis: a timeless challenge for medicine. J Prev Med Hyg. 2020;61(2):E143-7. https://doi.org/10.15167/2421-4248/jpmh2020.61.2.1402. [35] Migliori GB, Caminero Luna J, Kurhasani X, van den Boom M, Visca D, D’Ambrosio L, et al. History of prevention, diagnosis, treatment and rehabilitation of pulmonary sequelae of tuberculosis. Presse Med. 2022;51(3): 104112. https://doi.org/10.1016/j.lpm.2022.104112. [36] Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clin Microbiol Infect. 2014;20(3):196-201. https://doi.org/10.1111/1469-0691.12555. [37] Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P, et al. The war against tuberculosis: a review of natural compounds and their derivatives. Molecules. 2020;25(13): 3011. https://doi.org/10.3390/molecules25133011. [38] Bendre AD, Peters PJ, Kumar J. Tuberculosis: past, present and future of the treatment and drug discovery research. Curr Res Pharmacol Drug Discov. 2021;27(2): 100037. https://doi.org/10.1016/j.crphar.2021.100037. [39] Chai Q, Zhang Y, Liu CH. Mycobacterium tuberculosis: an adaptable pathogen associated with multiple human diseases. Front Cell Infect Microbiol. 2018;8: 158. https://doi.org/10.3389/fcimb.2018.00158. [40] Forrellad MA, Klepp LI, Gioffré A, SabioyGarcía J, Morbidoni HR, de la Paz SM, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1):3-66. https://doi.org/10.4161/viru.22329. [41] Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother. 2021;17(8):2454-70. https://doi.org/10.1080/21645515.2021.1885280. [42] Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D’Souza G, et al. A century of BCG: impact on tuberculosis control and beyond. Immunol Rev. 2021;301(1):98-121. https://doi.org/10.1111/imr.12968. [43] Chen J, Gao L, Wu X, Fan Y, Liu M, Peng L, et al. BCG-induced trained immunity: history, mechanisms and potential applications. J Transl Med. 2023;21(1): 106. https://doi.org/10.1186/s12967-023-03944-8. [44] Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol. 2022;26(13): 959656. https://doi.org/10.3389/fimmu.2022.959656. [45] Daniel BD, Venkatesan M, Padmapriyadarsini C. Safety profile of BCG revaccination for COVID prevention among elderly individuals in India. Indian J Tuberc. 2024;71(4):380-2. https://doi.org/10.1016/j.ijtb.2024.05.003. [46] Aaby P, Benn CS. Saving lives by training innate immunity with bacille Calmette-Guérin vaccine. Proc Natl Acad Sci USA. 2012;109(43):17317-8. https://doi.org/10.1073/pnas.1215761109. [47] Massabni AC, Bonini EH. Tuberculose: história e evolu??o dos tratamentos da doen?a. Rev Bras Multidiscip. 2019;22(2):6-34. https://doi.org/10.25061/2527-2675/ReBraM/2019.v22i2.678. [48] Waksman SA. Streptomycin: background, isolation, properties, and utilization. Science. 1953;118(3062):259-66. https://doi.org/10.1126/science.118.3062.259. [49] Fiolhais C. Uma Breve História da Tuberculose em Portugal. Rev Multidiscip. 2022;4(2):41-55. https://doi.org/10.23882/rmd.22098. [50] Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS. Evidence for expanding the role of streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2020;64(9):e00860-e920. https://doi.org/10.1128/AAC.00860-20. [51] Bertolli Filho C. História social da tuberculose e do tuberculoso: 1900-1950. Rio de Janeiro: Editora Fiocruz; 2001. p. 248. [52] Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med. 2012;367(10):931-6. https://doi.org/10.1056/NEJMra1205429. [53] Murray JF, Schraufnagel DE, Hopewell PC. Treatment of tuberculosis. A historical perspective. Ann Am Thorac Soc. 2015;12(12):1749-59. https://doi.org/10.1513/AnnalsATS.201509-632PS. [54] Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5(3):402-6. https://doi.org/10.1093/clinids/5.supplement_3.s402. [55] Hardie KR, Fenn SJ. JMM profile: rifampicin: a broad-spectrum antibiotic. J Med Microbiol. 2022. https://doi.org/10.1099/jmm.0.001566. [56] Grobbelaar M, Louw GE, Sampson SL, van Helden PD, Donald PR, Warren RM. Evolution of rifampicin treatment for tuberculosis. Infect Genet Evol. 2019;74: 103937. https://doi.org/10.1016/j.meegid.2019.103937. [57] Ogawa H, Itō T. Chemistry of Kanamycin. I Degradation Products of Kanamycin. J Antibiot. 1957;10(6):267. [58] Koseki Y, Okamoto S. Studies on cross-resistance between capreomycin and certain other anti-mycobacterial agents. Jpn J Med Sci Biol. 1963;16(1):31-8. https://doi.org/10.7883/yoken1952.16.31. [59] Hidy PH, Hodge EB, Young VV, Harned RL, Brewer GA, Phillips WF, et al. Structure and reactions of cycloserine. J Am Chem Soc. 1955;77(8):2345-6. https://doi.org/10.1021/ja01613a106. [60] Deshpande D, Alffenaar JC, K?ser CU, Dheda K, Chapagain ML, Simbar N, et al. d-Cycloserine pharmacokinetics/pharmacodynamics, susceptibility, and dosing implications in multidrug-resistant tuberculosis: a Faustian deal. Clin Infect Dis. 2018;67(supply_3):S308-16. https://doi.org/10.1093/cid/ciy624. [61] Goossens SN, Sampson SL, Van Rie A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev. 2020;34(1):e00141-e220. https://doi.org/10.1128/CMR.00141-20. [62] Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers. 2024;10(1): 22. https://doi.org/10.1038/s41572-024-00504-2. [63] Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017;5(4):291-360. https://doi.org/10.1016/S2213-2600(17)30079-6. [64] Khawbung JL, Nath D, Chakraborty S. Drug resistant tuberculosis: a review. Comp Immunol Microbiol Infect Dis. 2021;74: 101574. https://doi.org/10.1016/j.cimid.2020.101574. [65] Menzies NA, Allwood BW, Dean AS, Dodd PJ, Houben RMGJ, James LP, et al. Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis. Nat Commun. 2023;14(1): 6182. https://doi.org/10.1038/s41467-023-41937-9. [66] Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: emerging opportunities for drug discovery. Eur J Med Chem. 2021;15(224): 113732. https://doi.org/10.1016/j.ejmech.2021.113732. [67] Bhagwat A, Deshpande A, Parish T. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Front Cell Infect Microbiol. 2022;12: 974101. https://doi.org/10.3389/fcimb.2022.974101. [68] Perianes-Rodriguez A, Waltman L, van Eck NJ. Constructing bibliometric networks: a comparison between full and fractional counting. J Informetr. 2016;10(4):1178-95. https://doi.org/10.1016/j.joi.2016.10.006. [69] Leite LR, Pereira NG, Santos GA, Versiani MS, Xavier MA, Cardoso L, et al. Estudo prospectivo de patentes relacionadas à utiliza??o de Streptomyces spp. em bioprocessos para produ??o de antimicrobianos, antineoplásicos e antiparasitários. Braz J Dev. 2020;6(11):88042-56. [70] Ribeiro R. Domínio chinês em 37 das 44 tecnologias críticas: Diplomacia científica e política industrial. Rela??es Exteriores. 2024. https://relacoesexteriores.com.br/dominio-chines-em-37-das-44-tecnologias-criticas-diplomacia-cientifica-e-politica-industrial/ (Accessed 2025 May 15). [71] Laskaris P, Karagouni AD. Streptomyces, Greek habitats and novel pharmaceuticals: a promising challenge. Microbiol Res. 2021;12(4):840-6. https://doi.org/10.3390/microbiolres12040061. [72] Li S, Dong L, Lian W-H, Lin Z-L, Lu C-Y, Xu L, et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci Total Environ. 2021;790: 148235. https://doi.org/10.1016/j.scitotenv.2021.148235. [73] De la Hoz-Romo MC, Díaz L, Villamil L. Marine actinobacteria a new source of antibacterial metabolites to treat acne vulgaris disease—a systematic literature review. Antibiotics. 2022;11(7):965. https://doi.org/10.3390/antibiotics11070965. [74] Chakraborty B, Kumar RS, Almansour AI, Gunasekaran P, Nayaka S. Bioprospection and secondary metabolites profiling of marine Streptomyces levis strain KS46. Saudi J Biol Sci. 2022;29(2):667-79. https://doi.org/10.1016/j.sjbs.2021.11.055. [75] Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-derived novel alkaloids discovered in the past decade. Mar Drugs. 2024;22(1): 51. https://doi.org/10.3390/md22010051. [76] Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek. 2015;108(2):267-89. https://doi.org/10.1007/s10482-015-0502-7. [77] Gohain A, Sarma RK, Debnath R, Saikia J, Singh BP, Sarmah R, et al. Phylogenetic affiliation and antimicrobial effects of endophytic actinobacteria associated with medicinal plants: prevalence of polyketide synthase type II in antimicrobial strains. Folia Microbiol. 2019;64(4):481-96. https://doi.org/10.1007/s12223-018-00673-0. [78] Harir M, Bendif H, Bellahcene M, Fortas Z, Pogni R. Streptomyces secondary metabolites. In: Basic Biology and Applications of Actinobacteria. IntechOpen; 2018. https://doi.org/10.5772/intechopen.79890. [79] Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol. 2017;8: 828. https://doi.org/10.3389/fphar.2017.00828. [80] Martínez-Nú?ez MA, Rodríguez-Escamilla Z. Mining the Yucatan coastal microbiome for the identification of non-ribosomal peptides synthetase (NRPS) genes. Toxins. 2020;12(6): 349. https://doi.org/10.3390/toxins12060349. [81] Grünewald J, Marahiel MA. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev. 2006;70(1):121-46. https://doi.org/10.1128/MMBR.70.1.121-146.2006. [82] Praveen V, Tripathi CKM. Studies on the production of actinomycin-D by Streptomyces griseoruber-a novel source. Lett Appl Microbiol. 2009;49(4):450-5. https://doi.org/10.1111/j.1472-765X.2009.02689.x. [83] Qureshi KA, Azam F, Fatmi MQ, Imtiaz M, Prajapati DK, Rai PK, et al. In vitro and in silico evaluations of actinomycin X2 and actinomycin D as potent anti-tuberculosis agents. PeerJ. 2023;8(11): e14502. https://doi.org/10.7717/peerj.14502. [84] Chen C, Song F, Wang Q, Abdel-Mageed WM, Guo H, Fu C, et al. A marine-derived Streptomyces sp. MS449 produces high yield of actinomycin X2 and actinomycin D with potent anti-tuberculosis activity. Appl Microbiol Biotechnol. 2012;95(4):919-27. https://doi.org/10.1007/s00253-012-4079-z. [85] Shah AM, Shakeel UR, Hussain A, Mushtaq S, Rather MA, Shah A, et al. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas. India Microb Pathog. 2017;110:93-9. https://doi.org/10.1016/j.micpath.2017.06.017. [86] Rakhmawatie MD, Wibawa T, Lisdiyanti P, Pratiwi WR, Damayanti E. Potential secondary metabolite from Indonesian Actinobacteria (InaCC A758) against Mycobacterium tuberculosis. Iran J Basic Med Sci. 2021;24(8):1058-68. https://doi.org/10.22038/ijbms.2021.56468.12601. [87] Ozeki Y, Igarashi M, Doe M, Tamaru A, Kinoshita N, Ogura Y, et al. A new screen for tuberculosis drug candidates utilizing a luciferase-expressing recombinant Mycobacterium bovis Bacillus Calmette-Guérin. PLoS ONE. 2015;10(11): e0141658. https://doi.org/10.1371/journal.pone.0141658. [88] Intaraudom C, Rachtawee P, Suvannakad R, Pittayakhajonwut P. Antimalarial and antituberculosis substances from Streptomyces sp. BCC26924. Tetrahedron. 2011;67(40):7593-7. https://doi.org/10.1016/j.tet.2011.07.053. [89] Chen C, Chen X, Ren B, Guo H, Abdel-Mageed WM, Liu X, et al. Characterization of Streptomyces sp. LS462 with high productivity of echinomycin, a potent antituberculosis and synergistic antifungal antibiotic. J Ind Microbiol Biotechnol. 2021;48(9-10): kuab079. https://doi.org/10.1093/jimb/kuab079. [90] Zhou B, Shetye G, Yu Y, Santarsiero BD, Klein LL, Abad-Zapatero C, et al. Antimycobacterial rufomycin analogues from Streptomyces atratus strain MJM3502. J Nat Prod. 2020;83(3):657-67. https://doi.org/10.1021/acs.jnatprod.9b01095. [91] Sun C, Liu Z, Zhu X, Fan Z, Huang X, Wu Q, et al. Antitubercular ilamycins from marine-derived Streptomyces atratus SCSIO ZH16 Δ ilaR. J Nat Prod. 2020;83(5):1646-57. https://doi.org/10.1021/acs.jnatprod.0c00151. [92] Izumi R, Noda T, Ando T, Take T, Nagata A. Studies on tuberactinomycin. 3. Isolation and characterization of two minor components, tuberactinomycin B and tuberactinomycin O. J Antibiot (Tokyo). 1972;25(4):201-7. [93] Cai G, Napolitano JG, McAlpine JB, Wang Y, Jaki BU, Suh JW, et al. Hytramycins V and I, anti-Mycobacterium tuberculosis hexapeptides from a Streptomyces hygroscopicus strain. J Nat Prod. 2013;76(11):2009-18. https://doi.org/10.1021/np400145u. [94] Liu Q, Liu Z, Sun C, Shao M, Ma J, Wei X, et al. Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain. Org Lett. 2019;21(8):2634-8. https://doi.org/10.1021/acs.orglett.9b00618. [95] Kim TS, Shin YH, Lee HM, Kim JK, Choe JH, Jang JC, et al. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci Rep. 2017;7(1): 3431. https://doi.org/10.1038/s41598-017-03477-3. [96] Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology. 2002;148(9):2675-85. https://doi.org/10.1099/00221287-148-9-2675. [97] Sun C, Yang Z, Zhang C, Liu Z, He J, Liu Q, et al. Genome mining of Streptomyces atratus SCSIO ZH16: discovery of atratumycin and identification of its biosynthetic gene cluster. Org Lett. 2019;21(5):1453-7. https://doi.org/10.1021/acs.orglett.9b00208. [98] Hosoda K, Koyama N, Kanamoto A, Tomoda H. Discovery of nosiheptide, griseoviridin, and etamycin as potent anti-mycobacterial agents against Mycobacterium avium complex. Molecules. 2019;24(8): 1495. https://doi.org/10.3390/molecules24081495. [99] Raju R, Khalil ZG, Piggott AM, Blumenthal A, Gardiner DL, Skinner-Adams TS, et al. Mollemycin A: an antimalarial and antibacterial glyco-hexadepsipeptide-polyketide from an Australian marine-derived Streptomyces sp. (CMB-M0244). Org Lett. 2014;16(6):1716-9. https://doi.org/10.1021/ol5003913. [100] Khalil ZG, Salim AA, Lacey E, Blumenthal A, Capon RJ. Wollamides: antimycobacterial cyclic hexapeptides from an Australian soil Streptomyces. Org Lett. 2014;16(19):5120-3. https://doi.org/10.1021/ol502472c. [101] Gao W, Kim JY, Anderson JR, Akopian T, Hong S, Jin YY, et al. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother. 2015;59(2):880-9. https://doi.org/10.1128/AAC.04054-14. [102] Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol. 2014;21(4):509-18. https://doi.org/10.1016/j.chembiol.2014.01.014. [103] Dardic D, Lauro G, Bifulco G, Laboudie P, Sakhaii P, Bauer A, et al. Svetamycins A-G, unusual piperazic acid-containing peptides from Streptomyces sp. J Org Chem. 2017;82(12):6032-43. https://doi.org/10.1021/acs.joc.7b00228. [104] Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, et al. Towards a new tuberculosis drug: pyridomycin-nature’s isoniazid. EMBO Mol Med. 2012;4(10):1032-42. https://doi.org/10.1002/emmm.201201689. [105] Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, et al. Antibacterial polyene-polyol macrolides and cyclic peptides from the marine-derived Streptomyces sp. MS110128. Appl Microbiol Biotechnol. 2021;105(12):4975-86. https://doi.org/10.1007/s00253-021-11226-w. [106] Cui J, Kim E, Moon DH, Kim TH, Kang I, Lim Y, et al. Taeanamides A and B, nonribosomal lipo-decapeptides isolated from an intertidal-mudflat-derived Streptomyces sp. Mar Drugs. 2022;20(6): 400. https://doi.org/10.3390/md20060400. [107] Song F, Hu J, Zhang X, Xu W, Yang J, Li S, et al. Unique cyclized thiolopyrrolones from the marine-derived Streptomyces sp. BTBU20218885. Mar Drugs. 2022;20(3): 214. https://doi.org/10.3390/md20030214. [108] Waksman SA, Woodruff HB. Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proc Soc Exp Biol Med. 1940;45(2):609-14. https://doi.org/10.3181/00379727-45-11768. [109] Zhou W, Xie Z, Si R, Chen Z, Javeed A, Li J, et al. Actinomycin-X2-immobilized silk fibroin film with enhanced antimicrobial and wound healing activities. Int J Mol Sci. 2023;24(7): 6269. https://doi.org/10.3390/ijms24076269. [110] Machushynets NV, Elsayed SS, Du C, Siegler MA, de la Cruz M, Genilloud O, et al. Discovery of actinomycin L, a new member of the actinomycin family of antibiotics. Sci Rep. 2022;12(1): 2813. https://doi.org/10.1038/s41598-022-06736-0. [111] Crnov?i? I, Rückert C, Semsary S, Lang M, Kalinowski J, Keller U. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv Appl Bioinform Chem. 2017;10:29-46. https://doi.org/10.2147/AABC.S117707. [112] Ribeiro VCA, Santos AMS, Araújo LSF, Pessoa SS, Queiroz WJL. Screening of actinomycetes for anti-tuberculosis activity from Caatinga soil. Braz J Microbiol. 2022;53:101-10. [113] Finocchiaro G. Actinomycin D: a new opening for an old drug. Neuro Oncol. 2020;22(9):1235-6. https://doi.org/10.1093/neuonc/noaa172. [114] Zhang Y, Liu Q, Wang Z, Dong W, Cao Y. Advances in biosynthesis and pharmacology of actinomycins. Front Microbiol. 2023;14:1120452. [115] Wilbanks B, Trinh CT. Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnol Biofuels. 2017;10: 262. https://doi.org/10.1186/s13068-017-0952-4. [116] Erlandson A, Gade P, Menikpurage IP, Kim CY, Mera PE. The UvrA-like protein Ecm16 requires ATPase activity to render resistance against echinomycin. Mol Microbiol. 2022;117(6):1434-46. https://doi.org/10.1111/mmi.14918. [117] Gade P, Erlandson A, Ullah A, Chen X, Mathews II, Mera PE, et al. Structural and functional analyses of the echinomycin resistance conferring protein Ecm16 from Streptomyces lasalocidi. Sci Rep. 2023;13(1): 7980. https://doi.org/10.1038/s41598-023-34437-9. [118] Foster BJ, Clagett-Carr K, Shoemaker DD, Suffness M, Plowman J, Trissel LA, et al. Echinomycin: the first bifunctional intercalating agent in clinical trials. Invest New Drugs. 1985;3(4):403-10. https://doi.org/10.1007/BF00170766. [119] Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc. 2008;130(13):4507-16. https://doi.org/10.1021/ja711188x. [120] Fei J, Zhang Y, Lu Y, Qiu M, Liu H, Li C, et al. Structural insights into cyclomarin analogues and their differential bioactivities. Front Microbiol. 2024;15:1204455. [121] Fei F, Lun S, Saxena A, Raghavan M, DeRisi JL, Bishai WR, et al. Total syntheses of cyclomarin and metamarin natural products. Org Lett. 2024;26(45):9698-703. https://doi.org/10.1021/acs.orglett.4c03473. [122] Gettins PG, Olson ST. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J. 2016;473(15):2273-93. https://doi.org/10.1042/BCJ20160014. [123] Tseng A, Seet J, Phillips EJ. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br J Clin Pharmacol. 2015;79(2):182-94. https://doi.org/10.1111/bcp.12403. [124] Taylor G, Cui H, Leodolter J, Giese C, Weber-Ban E. ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation. Commun Biol. 2023;6(1): 301. https://doi.org/10.1038/s42003-023-04658-9. [125] Zhou B, Achanta PS, Shetye G, Chen SN, Lee H, Jin YY, et al. Rufomycins or ilamycins: naming clarifications and definitive structural assignments. J Nat Prod. 2021;84(10):2644-63. https://doi.org/10.1021/acs.jnatprod.1c00198. [126] Li C, Zhang Y, Wang Y, Liu Z, Yang W, Sun J, et al. The Clp protease complex as a promising target for anti-tuberculosis drug development: insights from natural product inhibitors. Curr Opin Chem Biol. 2021;61:74-81. [127] Laughlin ZT, Conn GL. Tuberactinomycin antibiotics: biosynthesis, anti-mycobacterial action, and mechanisms of resistance. Front Microbiol. 2022;13: 961921. https://doi.org/10.3389/fmicb.2022.961921. [128] Morse BK, Brown MS, Gagne JW, McArthur HA, McCormick EL, Murphy TK, et al. Production of tuberactinamine A by Streptomyces griseoverticillatus var. tuberacticus NRRL 3482 fed with (S)-2-aminoethyl-L-cysteine. J Antibiot. 1997;50:698-700. https://doi.org/10.7164/antibiotics.50.698. [129] Dirlam JP, Belton AM, Birsner NC, Brooks RR, Chang SP, Chandrasekaran RY, et al. Cyclic homopentapeptides 1. Analogs of tuberactinomycins and capreomycin with activity against vancomycin-resistant enterococci and Pasteurella. Bioorg Med Chem Lett. 1997;7(9):1139-44. https://doi.org/10.1016/S0960-894X(97)00186-8. [130] Linde RG, Birsner NC, Chandrasekaran RY, Clancy J, Howe RJ, Lyssikatos JP, et al. Cyclic homopentapeptides 3. Synthetic modifications to the capreomycins and tuberactinomycins: compounds with activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Bioorg Med Chem Lett. 1997;7(9):1149-52. https://doi.org/10.1016/S0960-894X(97)00188-1. [131] Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Piperazic acid-containing natural products: isolation, biological relevance and total synthesis. Nat Prod Rep. 2011;28(8):1445-71. https://doi.org/10.1039/c1np00041a. [132] Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, et al. Ohmyungsamycin promotes M1-like inflammatory responses to enhance host defence against Mycobacteroides abscessus infections. Virulence. 2022;13(1):1966-84. https://doi.org/10.1080/21505594.2022.2138009. [133] Benazet F, Cartier M, Florent JC, Godard C, Jung G, Lunel J, et al. Nosiheptide, a sulfur-containing peptide antibiotic isolated from Streptomyces actuosus 40037. Experientia. 1980;36(4):414-6. https://doi.org/10.1007/BF01975121. [134] Haste NM, Thienphrapa W, Tran DN, Loesgen S, Sun P, Nam SJ, et al. Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. J Antibiot. 2012;65(12):593-8. https://doi.org/10.1038/ja.2012.77. [135] Xie Y, Wang B, Liu J, Zhou J, Ma J, Huang H, Ju J. Identification of the biosynthetic gene cluster and regulatory cascade for the synergistic antibacterial antibiotics griseoviridin and viridogrisein in Streptomyces griseoviridis. ChemBioChem. 2012;13(18):2745-57. https://doi.org/10.1002/cbic.201200584. [136] Jin S, Chen H, Zhang J, Lin Z, Qu X, Jia X, et al. Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production. Synth Syst Biotechnol. 2024;9(3):445-52. https://doi.org/10.1016/j.synbio.2024.03.014. [137] Khalil ZG, Hill TA, De Leon Rodriguez LM, Lohman RJ, Hoang HN, Reiling N, Hillemann D, et al. Structure-activity relationships of wollamide cyclic hexapeptides with activity against drug-resistant and intracellular Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(3): e01773-18. https://doi.org/10.1128/AAC.01773-18. [138] Rollo RF, Mori G, Hill TA, Hillemann D, Niemann S, Homolka S, et al. Wollamide cyclic hexapeptides synergize with established and new tuberculosis antibiotics in targeting Mycobacterium tuberculosis. Microbiol Spectr. 2023;11(4):e00465-e523. https://doi.org/10.1128/spectrum.00465-23. [139] Wolf NM, Lee H, Zagal D, Nam JW, Oh DC, Lee H, et al. Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallogr D Struct Biol. 2020;76(Pt 5):458-71. https://doi.org/10.1107/S2059798320004027. [140] Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, et al. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl. 2011;50(26):5889-91. https://doi.org/10.1002/anie.201101740. |
| [1] | Delfly Booby Abdjul, Fitri Budiyanto, Joko Tri Wibowo, Tutik Murniasih, Siti Irma Rahmawati, Dwi Wahyu Indriani, Masteria Yunovilsa Putra, Asep Bayu. Unlocking potent anti-tuberculosis natural products through structure–activity relationship analysis [J]. Natural Products and Bioprospecting, 2025, 15(5): 44-44. |
| [2] | Ni Wayan Martiningsih, Siska Elisahbet Sinaga, Wahyu Safriansyah, Unang Supratman, Desi Harneti. Nitrogen-containing secondary metabolites from Meliaceae Family and their biological activity: a review [J]. Natural Products and Bioprospecting, 2025, 15(5): 47-47. |
| [3] | Chuan-Su Liu, Bing-Chao Yan, Han-Dong Sun, Jin-Cai Lu, Pema-Tenzin Puno. Bridging chemical space and biological efficacy: advances and challenges in applying generative models in structural modification of natural products [J]. Natural Products and Bioprospecting, 2025, 15(4): 37-37. |
| [4] | Olusesan Ojo, Idris Njanje, Dele Abdissa, Tarryn Swart, Roxanne L. Higgitt, Rosemary A. Dorrington. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials [J]. Natural Products and Bioprospecting, 2025, 15(2): 19-19. |
| [5] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023) [J]. Natural Products and Bioprospecting, 2025, 15(2): 13-13. |
| [6] | Dong-Yang Wang, Ming-Xing Li, Yan-Chao Xu, Peng Fu, Wei-Ming Zhu, Li-Ping Wang. Dibohemamines I-O from Streptomyces sp. GZWMJZ-662, an endophytic actinomycete from the medicinal and edible plant Houttuynia cordata Thunb. [J]. Natural Products and Bioprospecting, 2025, 15(1): 9-9. |
| [7] | María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract [J]. Natural Products and Bioprospecting, 2025, 15(1): 4-4. |
| [8] | Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis [J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10. |
| [9] | Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products [J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37. |
| [10] | Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2 [J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40. |
| [11] | Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling [J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30. |
| [12] | Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease [J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2. |
| [13] | Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond [J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5. |
| [14] | Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5 [J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8. |
| [15] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data [J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
