Natural Products and Bioprospecting ›› 2023, Vol. 13 ›› Issue (6): 44-44.DOI: 10.1007/s13659-023-00406-y
• ORIGINAL ARTICLES • Previous Articles Next Articles
Shuruq Alsuhaymi1, Upendra Singh1, Inas Al-Younis1, Najeh M. Kharbatia2, Ali Haneef3, Kousik Chandra1, Manel Dhahri4, Mohammed A. Assiri5, Abdul-Hamid Emwas2, Mariusz Jaremko1,6
Received:
2023-07-17
Online:
2023-12-26
Published:
2023-12-24
Contact:
Abdul-Hamid Emwas,E-mail:abdelhamid.emwas@kaust.edu.sa;Mariusz Jaremko,E-mail:Mariusz.jaremko@kaust.edu.sa
Supported by:
Shuruq Alsuhaymi1, Upendra Singh1, Inas Al-Younis1, Najeh M. Kharbatia2, Ali Haneef3, Kousik Chandra1, Manel Dhahri4, Mohammed A. Assiri5, Abdul-Hamid Emwas2, Mariusz Jaremko1,6
通讯作者:
Abdul-Hamid Emwas,E-mail:abdelhamid.emwas@kaust.edu.sa;Mariusz Jaremko,E-mail:Mariusz.jaremko@kaust.edu.sa
基金资助:
Shuruq Alsuhaymi, Upendra Singh, Inas Al-Younis, Najeh M. Kharbatia, Ali Haneef, Kousik Chandra, Manel Dhahri, Mohammed A. Assiri, Abdul-Hamid Emwas, Mariusz Jaremko. Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR[J]. Natural Products and Bioprospecting, 2023, 13(6): 44-44.
Shuruq Alsuhaymi, Upendra Singh, Inas Al-Younis, Najeh M. Kharbatia, Ali Haneef, Kousik Chandra, Manel Dhahri, Mohammed A. Assiri, Abdul-Hamid Emwas, Mariusz Jaremko. Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR[J]. 应用天然产物, 2023, 13(6): 44-44.
[1] Zohary D, Spiegel-Roy P. Beginnings of Fruit Growing in the Old World: Olive, grape, date, and fig emerge as important Bronze Age additions to grain agriculture in the Near East. Science. 1975;187(4174):319-27. [2] Chao CT, Krueger RR. The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience. 2007;42(5):1077-82. [3] Al-Alawi RA, et al. Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci. 2017;8:845. [4] Banat F, Al-Asheh S, Al-Makhadmeh L. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem. 2003;39(2):193-202. [5] Barreveld WH, Food and Agriculture Organization of the United Nations, Date palm products. 1993: Food and Agriculture Organization of the United Nations. [6] Bhat RA, Hakeem K, Dervash MA. Phytomedicine: a treasure of pharmacologically active products from plants. Cambridge: Academic Press; 2021. [7] Ghnimi S, et al. Date fruit (Phoenix dactylifera L.): an underutilized food seeking industrial valorization. NFS J. 2017;6:1-10. [8] Al-Farsi MA, Lee CY. Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr. 2008;48(10):877-87. [9] Gnanamangai B, et al. Analysis of antioxidants and nutritional assessment of date palm fruits. Sustain Agric Rev. 2019;34:19-40. [10] Mohamed HI, et al. Date palm (Phoenix dactylifera L.) secondary metabolites: bioactivity and pharmaceutical potential. Phytomedicine. 2021;483-531. https://doi.org/10.1016/B978-0-12-824109-7.00018-2. [11] Vayalil PK. Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr. 2012;52(3):249-71. [12] Adeosun AM, et al. Phytochemical, minerals and free radical scavenging profiles of Phoenix dactilyfera L. seed extract. J Taibah Univ Med Sci. 2016;11(1):1-6. [13] El Arem A, et al. Hepatoprotective activity of date fruit extracts against dichloroacetic acid-induced liver damage in rats. J Funct Foods. 2014;9:119-30. [14] Farag MA, Otify A, Baky MH. Phoenix Dactylifera L. date fruit by-products outgoing and potential novel trends of phytochemical, nutritive and medicinal merits. Food Rev Int. 2023;39(1):488-510. https://doi.org/10.1080/87559129.2021.1918148. [15] Mohamed DA, Al-Okbi SY. In vivo evaluation of antioxidant and anti-inflammatory activity of different extracts of date fruits in adjuvant arthritis. Pol J Food Nutr Sci. 2004;13(54):397-402. [16] Taleb H, et al. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.). J Ethnopharmacol. 2016;194:457-68. [17] Niazi S, et al. Date palm: composition, health claim and food applications. Int J Pub Health Health Syst. 2017;2:9-17. [18] Velu G, Palanichamy V, Rajan AP. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine, in Bioorganic phase in natural food: an overview. 2018, Springer. 135-156. [19] Ghazzawy HS, et al. Impact of geographical distribution on genetic variation of two date palm cultivars in arid regions. Fresenius Environ Bull. 2021;30(10):11513-23. [20] Ghazzawy HS, Alqahtani N, Mansour H. Climate change, irrigation systems, nitrogen levels and their impact on the quality of wheat and date palm in the semi arid regions. 2022. https://www.researchgate.net/publication/361231068_CLIMATE_CHANGE_IRRIGATION_SYSTEMS_NITROGEN_LEVELS_AND_THEIR_IMPACT_ON_THE_QUALITY_OF_WHEAT_AND_DATE_PALM_IN_THE_SEMI-ARID_REGIONS_2022. [21] Mohammed M, et al. The combined effects of precision-controlled temperature and relative humidity on artificial ripening and quality of date fruit. Foods. 2021;10(11):2636. [22] El-Beltagi HS, et al. Physiological response, phytochemicals, antioxidant, and enzymatic activity of date palm (Phoenix dactylifera L.) cultivated under different storage time, harvesting stages, and temperatures. Saudi J Biol Sci. 2023;30(2):103818. https://doi.org/10.1016/j.sjbs.2023.103818. [23] Schmidt H. Chronic disease prevention and health promotion. Public health ethics: cases spanning the globe, 2016: 137-176. [24] Ávila-Escalante ML, et al. The effect of diet on oxidative stress and metabolic diseases—clinically controlled trials. J Food Biochem. 2020;44(5): e13191. [25] Rani V, et al. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183-93. [26] Ciumărnean L, et al. The effects of flavonoids in cardiovascular diseases. Molecules. 2020;25(18):4320. [27] Neelam K, et al. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients. 2021;13(1):246. [28] Kopustinskiene DM, et al. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. [29] Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299: 125124. [30] Emwas A-H, et al. Fluxomics-new metabolomics approaches to monitor metabolic pathways. Front Pharmacol. 2022;13: 805782. [31] Al-Farsi M, et al. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007;104(3):943-7. [32] Dunn WB, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060-83. [33] Gibney MJ, et al. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr. 2005;82(3):497-503. [34] Emwas A-H, et al. Pharmacometabolomics: a new horizon in personalized medicine, in metabolomics-methodology and applications in medical sciences and life sciences. 2021, IntechOpen. [35] Emwas A-HM, et al. You are what you eat: application of metabolomics approaches to advance nutrition research. Foods. 2021;10(6):1249. [36] Szczepski K et al. Metabolic biomarkers in cancer, in Metabolomics. 2023, Elsevier. 173-198. [37] Al-Nemi R, et al. Untargeted metabolomic profiling and antioxidant capacities of different solvent crude extracts of Ephedra foeminea. Metabolites. 2022;12(5):451. [38] Emwas A-H, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123. [39] Chandra K, et al. The robust NMR toolbox for metabolomics. Mol Omics. 2021;17(5):719-24. [40] Chandra K, et al. NMR-based metabolomics with enhanced sensitivity. RSC Adv. 2021;11(15):8694-700. [41] Saleh MS, et al. Correlation of FT-IR fingerprint and α-glucosidase inhibitory activity of salak (Salacca zalacca) fruit extracts utilizing orthogonal partial least square. Molecules. 2018;23(6):1434. [42] Aziz Z, et al. FTIR and HPLC-based metabolomics of yacon leaves extracts (Smallanthus sonchifolius [Poepp & Endl.] H. Robinson) from two locations in Indonesia. Indonesian J Chem. 2020;20(3):567-78. [43] Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114(1):30.4.1-30.4.32. [44] Umar AH, et al. Untargeted metabolomics analysis using FTIR and UHPLC-Q-Orbitrap HRMS of two Curculigo species and evaluation of their antioxidant and α-glucosidase inhibitory activities. Metabolites. 2021;11(1):42. [45] Farag MA, et al. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI-qTOF-MS and GC-MS analyzed by chemometrics. Food Res Int. 2014;64:218-26. [46] AlShwyeh H, Almahasheer H. Glucose content of 35 Saudi Arabian date fruits (Phoenix dactylifera L.). J Saudi Soc Agric Sci. 2022;21(6):420-4. [47] Ahmed J, Al-Jasass FM, Siddiq M. Date fruit composition and nutrition. Dates: postharvest science, processing technology and health benefits. Wiley; 2014, p. 261-283. [48] El-Mergawi R, Al-Humaid A, El-Rayes D. Phenolic profiles and antioxidant activity in seeds of ten date cultivars from Saudi Arabia. J Food Agric Environ. 2016;14(2):38-43. [49] Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019;24: e00370. [50] Ullah A, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. [51] Das S, Acharya J, De B. Metabolite profiling, antioxidant activity, and glycosidase inhibition property of the mesocarp tissue extracts of sugar date palm [Phoenix sylvestris (L.) Roxb.] fruits. Int J Food Properties. 2017;20(12):2982-93. [52] Abedi F, Razavi BM, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res. 2020;34(4):729-41. [53] Joshi R, et al. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic Res. 2012;46(1):11-20. [54] Qian W, et al. In vitro antibacterial activity and mechanism of vanillic acid against carbapenem-resistant Enterobacter cloacae. Antibiotics. 2019;8(4):220. [55] Chen JH, Ho C-T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem. 1997;45(7):2374-8. [56] Lv L, et al. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(7):1327-39. [57] Chao P-C, Hsu C-C, Yin M-C. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab. 2009;6(1):1-8. [58] Nićiforović N, Abramovič H. Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf. 2014;13(1):34-51. [59] Anderson RF, et al. Green tea catechins partially protect DNA from· OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis. 2001;22(8):1189-93. [60] Kim J, et al. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci Rep. 2021;11(1):1-11. [61] Yin W, et al. Anti-inflammatory effects of grape seed procyanidin B2 on a diabetic pancreas. Food Funct. 2015;6(9):3065-71. [62] Gutierrez-Salmean G, et al. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. J Nutr Biochem. 2014;25(1):91-4. [63] Albayrak A, et al. Gastric anti-ulcerative and anti-inflammatory activity of metyrosine in rats. Pharmacol Rep. 2010;62(1):113-9. [64] Seifikalhor M, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 2019;38(8):847-67. [65] Maqsood S, et al. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020;308: 125522. [66] Hamad I, et al. Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules. 2015;20(8):13620-41. [67] Alahyane A, et al. Bioactive compounds and antioxidant activity of seventeen Moroccan date varieties and clones (Phoenix dactylifera L.). S Afr J Bot. 2019;121:402-9. [68] Harkat H, et al. Assessment of biochemical composition and antioxidant properties of Algerian date palm (Phoenix dactylifera L.) seed oil. Plants. 2022;11(3):381. [69] Kadum H, et al. Bioactive compounds responsible for antioxidant activity of different varieties of date (Phoenix dactylifera L.) elucidated by 1H-NMR based metabolomics. Int J Food Properties. 2019;22(1):462-76. [70] Dhahri M, et al. Extraction, characterization, and antioxidant activity of polysaccharides from ajwa seed and flesh. Separations. 2023;10(2):103. [71] Biglari F, AlKarkhi AF, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107(4):1636-41. [72] Al-Shwyeh HA. Date palm (Phoenix dactylifera L.) fruit as potential antioxidant and antimicrobial agents. J Pharm Bioallied Sci. 2019;11(1):1. [73] Salem MA, et al. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods. 2016;12(1):1-15. [74] Tsugawa H, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523-6. [75] Singh U, et al. Compound-specific 1D 1H NMR pulse sequence selection for metabolomics analyses. ACS Omega, 2023. [76] Chong J, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486-94. [77] Wang X, et al. Design, synthesis and antibacterial evaluation of some new 2-phenyl-quinoline-4-carboxylic acid derivatives. Molecules. 2016;21(3):340. [78] Re R, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7. |
[1] | Yi-Yun Yuan, Yan Li, Wen-Yu Lu, Ai-Lin Liang, Jing Li, Wen-Xuan Wang. Xylariaides A and B, novel cytochalasans with a unique 5/6/5/3 ring system from a soil fungus Xylaria sp. Y01 [J]. Natural Products and Bioprospecting, 2025, 15(3): 23-23. |
[2] | Wenta Tan, Shuo Fu, Yufei Wang, Bojun Hu, Guiquan Ding, Li Zhang, Wen Zhang, Guanhua Du, Junke Song. Metabolomic and transcriptomic analyses revealed potential mechanisms of Anchusa italica Retz. in alleviating cerebral ischemia-reperfusion injury via Wnt/β-catenin pathway modulation [J]. Natural Products and Bioprospecting, 2025, 15(2): 11-11. |
[3] | Hamid Ahmadpourmir, Homayoun Attar, Javad Asili, Vahid Soheili, Seyedeh Faezeh Taghizadeh, Abolfazl Shakeri. Natural-derived acetophenones: chemistry and pharmacological activities [J]. Natural Products and Bioprospecting, 2024, 14(4): 28-28. |
[4] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery [J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37. |
[5] | Asih Triastuti, Marieke Vansteelandt, Fatima Barakat, Carlos Amasifuen, Patricia Jargeat, Mohamed Haddad. Untargeted metabolomics to evaluate antifungal mechanism: a study of Cophinforma mamane and Candida albicans interaction [J]. Natural Products and Bioprospecting, 2023, 13(1): 1-1. |
[6] | Shah Faisal, Syed Lal Badshah, Bibi Kubra, Abdul, Hamid Emwas, and Mariusz Jaremko. Alkaloids as potential antivirals. A comprehensive review [J]. Natural Products and Bioprospecting, 2023, 13(1): 4-4. |
[7] | Pablo A. Chacón-Morales, Juan M. Amaro-Luis, Luis Beltrán Rojas Fermín, Rémi Jacquet, Denis Deffieux, Laurent Pouységu, Stéphane Quideau. Preparation of a ε-caprolactonic diterpenoid derivate by unexpected oxidative cleavage/lactonization of 2-oxoaustroeupatol [J]. Natural Products and Bioprospecting, 2022, 12(3): 20-20. |
[8] | Pinaki Dey, Joginder Singh, Jagadish Kumar Suluvoy, Kevin Joseph Dilip, Jayato Nayak. Utilization of Swertia chirayita Plant Extracts for Management of Diabetes and Associated Disorders: Present Status, Future Prospects and Limitations [J]. Natural Products and Bioprospecting, 2020, 10(6): 431-443. |
[9] | Elier Galarraga, Andersson Mavares, Neudo Urdaneta, Rafael E. Rodríguez-Lugo, Juan Manuel Amaro-Luis. Artificial Triterpenoid Fatty Acid Ester Isolated From the Leaves of Phytolacca icosandra L [J]. Natural Products and Bioprospecting, 2020, 10(4): 221-225. |
[10] | Dezhi Yang, Bin Su, Yancai Bi, Li Zhang, Baoxi Zhang, Junke Song, Yang Lu, Guanhua Du. Preparation and Certification of a New Salvianolic Acid A Reference Material for Food and Drug Research [J]. Natural Products and Bioprospecting, 2020, 10(2): 67-76. |
[11] | Hai-Li Yu, Qin Long, Wen-Fang Yi, Bao-Jia Yang, Yu Song, Xiao Ding, Shun-Lin Li, Xiao-Jiang Hao. Two New C21 Steroidal Glycosides from the Roots of Cynanchum paniculatum [J]. Natural Products and Bioprospecting, 2019, 9(3): 209-214. |
[12] | Hou-Chao Xu, Kun Hu, Han-Dong Sun, Pema-Tenzin Puno. Four 14(13→12)-Abeolanostane Triterpenoids with 6/6/5/6-Fused Ring System from the Roots of Kadsura coccinea [J]. Natural Products and Bioprospecting, 2019, 9(3): 165-173. |
[13] | S. Manimaran, K. SambathKumar, R. Gayathri, K. Raja, N. Rajkamal, M. Venkatachalapathy, G. Ravichandran, C. Lourdu EdisonRaj. Medicinal Plant Using Ground State Stabilization of Natural Antioxidant Curcumin by Keto-Enol Tautomerisation [J]. Natural Products and Bioprospecting, 2018, 8(5): 369-390. |
[14] | Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products [J]. Natural Products and Bioprospecting, 2018, 8(4): 321-334. |
[15] | Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products [J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||