植物研究 ›› 2024, Vol. 44 ›› Issue (2): 232-238.doi: 10.7525/j.issn.1673-5102.2024.02.008
• 遗传与育种 • 上一篇
郝雪峰1(), 贾晓宇1, 曹海艳1, 亢春霞1, 裴雁曦2
收稿日期:
2023-08-07
出版日期:
2024-03-20
发布日期:
2024-03-11
通讯作者:
郝雪峰
E-mail:Haoxf@tynu.edu.cn
作者简介:
郝雪峰(1978—),女,副教授,主要从事非生物胁迫下植物气体信号转导研究。E-mail:Haoxf@tynu.edu.cn
基金资助:
Xuefeng HAO1(), Xiaoyu JIA1, Haiyan CAO1, Chunxia KANG1, Yanxi PEI2
Received:
2023-08-07
Online:
2024-03-20
Published:
2024-03-11
Contact:
Xuefeng HAO
E-mail:Haoxf@tynu.edu.cn
摘要:
叶片是主要的光合作用器官,选育利于光合作用的叶片形态已成为重要的育种目标。atscamp是从拟南芥(Arabidopsis thaliana)突变体库(约6 000株系)中筛选获得的1株叶片宽大突变体。Tail-PCR分析该突变体为AT1G11180位点的插入,该基因位点编码1个分泌载体膜蛋白(SCAMP)。RT-PCR检测显示,该基因转录表达水平基本为零。进一步研究发现,该突变体叶片的宽度和叶面积极显著大于野生型植株(P<0.01),但是冠幅基本保持不变;同时atscamp突变体叶绿素含量增加,叶绿素最大荧光、PSⅡ潜在光化学效率显著增加(P<0.05);相应地,突变体植株蒸腾系数(Tr)、净光合速率(Pn)和叶片水分利用效率(WUE)显著增加(P<0.05)。拟南芥AT1G11180基因的时空特异性表达分析显示,该基因仅在叶片中高表达,在其他器官中表达量很低;且随着植物发育成熟,该基因表达量逐渐增加。研究结果表明AtSCAMP基因在叶形发育中发挥着重要作用。
中图分类号:
郝雪峰, 贾晓宇, 曹海艳, 亢春霞, 裴雁曦. 一株拟南芥宽叶形突变体atscamp的分离鉴定[J]. 植物研究, 2024, 44(2): 232-238.
Xuefeng HAO, Xiaoyu JIA, Haiyan CAO, Chunxia KANG, Yanxi PEI. Isolation and Identification of a Novel Enlarged Leaf Mutant atscamp in Arabidopsis thaliana[J]. Bulletin of Botanical Research, 2024, 44(2): 232-238.
表1
基因分型及表达量鉴定引物列表
引物 Primer | 引物序列(5′→3′) Primer sequence(5′→3′) |
---|---|
AtSCAMP(F-RT-PCR) | ATCATCCCCTCGACGTACTGTAC |
AtSCAMP(R-RT-PCR) | CTGGTTTTATATACAGCAGTCACG |
AtSCAMP(F-qRT-PCR) | TCAGTGGTTAGCATCTGGGTT |
AtSCAMP(R-qRT-PCR) | TGCCTCATATGGCAGCTCTC |
AtACTIN(F-RT-PCR) | CTCAGCACCTTCCAACAGATGTGGA |
AtACTIN(R-RT-PCR) | CCAAAAAAATGAACCAAGGACCAAA |
AtACTIN(F-qRT-PCR) | TATGAATTACCCGATGGGCAAG |
AtACTIN(R-qRT-PCR) | TGGAACAAGACTTCTGGGCAT |
P1 | CTACCTCTTTTCAACACCGA |
P2 | AGTAACGGCGATGATATTCC |
P3 | ATTTTGCCGATTTCGGAAC |
1 | MCKENZIE F C, WILLIAMS J.Sustainable food production: constraints,challenges and choices by 2050[J].Food Security,2015,7:221-233. |
2 | SUN S C, JIN D M, SHI P L.The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J].Annals of Botany,2006,97(1):97-107. |
3 | 郭书磊,张君,齐建双,等.玉米叶形相关性状的Meta-QTL及候选基因分析[J].植物学报,2018,53(4):487-501. |
GUO S L, ZHANG J, QI J S,et al.Meta-QTL and candidate gene analysis of leaf shape related traits in maize[J].Bulletin of Botany,2018,53(4):487-501. | |
4 | CHEN H, REED S C, LV X T,et al.Coexistence of multiple leaf nutrient resorption strategies in a single ecosystem[J].Science of The Total Environment,2021,772:144951. |
5 | 丁一,韩娟英,傅吉,等.水稻籽粒灌浆的影响因素及相关基因和蛋白研究进展[J].中国稻米,2018,24(3):1-6. |
DING Y, HAN J Y, FU J,et al.Research progress on influencing factors of rice grain filling and related genes and proteins[J].China Rice,2018,24(3):1-6. | |
6 | 徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209. |
XU H Y, ZHAO J S.Canopy photosynthetic capacity of high-yield wheat and contribution of different organs[J].Acta Agronomica Sinica,1995,21(2):204-209. | |
7 | SCARPELLA E, BARKOULAS M, TSIANTIS M.Control of leaf and vein development by auxin[J].Cold Spring Harbor Perspectives in Biology,2010,2(1):a001511. |
8 | 陈代波,程式华,曹立勇.水稻窄叶性状的研究进展[J].中国稻米,2010,16(3):1-4. |
CHEN D B, CHENG S H, CAO L Y.Research progress on narrow leaf traits of rice[J].China Rice,2010,16(3):1-4. | |
9 | 刘继云,叶胜海,李小华,等.一个水稻矮秆窄叶突变体的鉴定和基因定位[J].浙江农业学报,2014,26(1):7-13. |
LIU J Y, YE S H, LI X H,et al.Identification and gene mapping of a dwarf and narrow leaf mutant in rice[J].Acta Agriculturae Zhejiangensis,2014,26(1):7-13. | |
10 | ZHANG G H, LI S Y, WANG L,et al. LSCHL4 from Japonica cultivar,which is allelic to NAL1,increases yield of Indica super rice 93-11[J].Molecular Plant,2014,7(8):1350-1364. |
11 | JIANG D, FANG J J, LOU L M,et al.Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division[J].PLoS One,2015,10(2):e0118169. |
12 | FUJINO K, MATSUDA Y, OZAWA K,et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J].Molecular Genetics and Genomics,2008,279(5):499-507. |
13 | 张海瑞.拟南芥中一个新基因YUAN1在叶片形状和大小控制中的功能研究[D].太原:山西师范大学,2013. |
ZHANG H R.The function of a novel gene YUAN1 in leaf shape and size control in Arabidopsis thaliana [D].Taiyuan:Shanxi Normal University,2013. | |
14 | KIM J H, KENDE H.A transcriptional coactivator,AtGIF1,is involved in regulating leaf growth and morphology in Arabidopsis[J].Proceedings of The National Academy of Sciences of The United States of America,2004,101(36):13374-13379. |
15 | HORIGUCHI G, KIM G T, TSUKAYA H.The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana [J].The Plant Journal,2005,43(1):68-78. |
16 | 黄淦,王潇,金学锋,等.拟南芥谷氧还蛋白GRXC9负调控叶片大小[J].植物学报,2017,52(5):550-559. |
HUANG G, WANG X, JIN X F,et al.Arabidopsis glutaredoxin GRXC9 negatively regulates leaf size[J].Chinese Bulletin of Botany,2017,52(5):550-559. | |
17 | BRAND S H, LAURIE S M, MIXON M B,et al.Secretory carrier membrane proteins 31-35 define a common protein composition among secretory carrier membranes[J].Journal of Biological Chemistry,1991,266(28):18949-18957. |
18 | LAM S K, SIU C L, HILLMER S,et al.Rice SCAMP1 defines clathrin-coated,trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells[J].The Plant Cell,2007,19(1):296-319. |
19 | LAM S K, TSE Y C, ROBINSON D G,et al.Tracking down the elusive early endosome[J].Trends in Plant Science,2007,12(11):497-505. |
20 | WANG H, TSE Y C, LAW A H Y,et al.Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth[J].The Plant Journal,2010,61(5):826-838. |
21 | 白雪杨.拟南芥SCAMP家族基因的鉴定及AtSCAMP1基因的耐盐性功能分析[D].海口:海南大学,2020. |
BAI X Y.Identification of SCAMP family genes in Arabidopsis thaliana and analysis of salt tolerance function of AtSCAMP1 gene[D].Haikou:Hainan University,2020. | |
22 | 王莉.小麦耐盐基因的克隆与功能研究[D].石家庄:河北师范大学,2010. |
WANG L.Cloning and functional analysis of salt tolerance genes in wheat[D].Shijiazhuang:Hebei Normal University,2010. | |
23 | ZHANG J, XU J X, KONG Y Z,et al.Generation of chemical-inducible activation tagging T-DNA insertion lines of Arabidopsis thaliana [J].Acta Genetica Sinica,2005,32(10):1082-1088. |
24 | LIU Y G, MITSUKAWA N, OOSUMI T,et al.Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J].The Plant Journal,1995,8(3):457-463. |
25 | DIXIT V, PANDEY V, SHYAM R.Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv.Azad)[J].Journal of Experimental Botany,2001,52(358):1101-1109. |
26 | 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:195-196. |
LI H S.Principles and techniques of plant physiological and biochemical experiments[M].Beijing:Higher Education Press,2000:195-196. | |
27 | POORTER H, DE JONG R.A comparison of specific leaf area,chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity[J].New Phytologist,1999,143(1):163-176. |
28 | ZHU J Y, ZHU H, CAO Y J,et al.Effect of simulated warming on leaf functional traits of urban greening plants[J].BMC Plant Biology,2020,20(1):139-152. |
29 | 王利,王威,许德阳,等.拟南芥ASL25/LBD28基因过量表达对叶片形态建成的影响[J].西北植物学报,2010,30(5):888-893. |
WANG L, WANG W, XU D Y,et al.Effects of ASL25 / LBD28 gene overexpression on leaf morphogenesis in Arabidopsis thaliana [J].Acta Botanica Boreali-Occidentalia Sinica,2010,30(5):888-893. | |
30 | ADAL A M, BINSON E, REMEDIOS L,et al.Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early flowering and alter leaf morphology in Arabidopsis thaliana [J].Planta,2021,254(3):54-66. |
31 | BLEIN T, PULIDO A, VIALETTE-GUIRAUD A,et al.A conserved molecular framework for compound leaf development[J].Science,2008,322(5909):1835-1839. |
32 | VLAD D, KIERZKOWSKI D, RAST M I,et al.Leaf shape evolution through duplication,regulatory diversification,and loss of a homeobox gene[J].Science,2014,343(6172):780-783. |
33 | LI G J, YANG J J, CHEN Y M,et al.Shoot meristemless participates in the heterophylly of Hygrophila difformis (Acanthaceae)[J].Plant Physiology,2022,190(3):1777-1791. |
34 | MCNEW J A, SØGAARD M, LAMPEN N M,et al.Ykt6p,a prenylated SNARE essential for endoplasmic reticulum-Golgi transport[J].Journal of Biological Chemistry,1997,272(28):17776-17783. |
35 | MATTHIES H J G, HAN O, SHIELDS A,et al.Subcellular localization of the antidepressant-sensitive norepinephrine transporter[J].BMC Neuroscience,2009,10(1):65-74. |
[1] | 刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(1): 1-7. |
[2] | 江转转, 龚莉, 宋亚玲. 拟南芥叶绿体分裂蛋白PARC6影响子叶与真叶的生长[J]. 植物研究, 2023, 43(5): 700-710. |
[3] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
[4] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[5] | 蔡圆圆, 夏季奔奔, 应文涵, 王洁瑶, 谢涛, 邢孔丫, 冯宣军, 华学军. 拟南芥线粒体蛋白突变体ssr1-2表型的详细鉴定与分析[J]. 植物研究, 2023, 43(3): 421-431. |
[6] | 田琴, 邵成艳, 段涵宁, 杨晨璇, 李璐. 中国云南8种堇菜属植物的叶形态解剖特征及分类学意义[J]. 植物研究, 2023, 43(3): 447-460. |
[7] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
[8] | 王旋, 刘志雄. 甜荞长花柱长雄蕊突变体lpls大小孢子发生和雌雄配子体的发育[J]. 植物研究, 2021, 41(6): 921-927. |
[9] | 武国凡, 成宏斌, 吴玉俊, 沈娟, 吴旺泽. CRISPR/Cas9介导靶向敲除拟南芥BRI1突变体的鉴定[J]. 植物研究, 2021, 41(3): 362-371. |
[10] | 李冰, 程玉祥. 杨树SHMT基因家族分析及PtrSHMT9突变体创制[J]. 植物研究, 2020, 40(6): 906-912. |
[11] | 张雨晴, 刘野, 曲春浦, 刘关君, 杨天天, 杨成君. 转基因PnDof30拟南芥非生物胁迫下的抗性分析[J]. 植物研究, 2020, 40(3): 407-415. |
[12] | 李子义, 贺子航, 卢惠君, 王玉成, 及晓宇. 拟南芥AtUNE12基因的耐盐功能初探[J]. 植物研究, 2020, 40(2): 257-265. |
[13] | 何好, 朱国庆, 陈诗雅, 徐畅, 金淑梅. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究, 2020, 40(2): 274-283. |
[14] | 王爽, 程玉祥, 夏德安. 拟南芥根毛功能基因AtGDPD-Like3关键氨基酸位点鉴定[J]. 植物研究, 2020, 40(1): 79-84. |
[15] | 李芃, 郇兆蔚, 丁兰. Rabdosinate调节生长素极性运输蛋白PIN1、PIN3和PIN4抑制拟南芥幼苗根生长[J]. 植物研究, 2019, 39(6): 908-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||