植物研究 ›› 2020, Vol. 40 ›› Issue (2): 257-265.doi: 10.7525/j.issn.1673-5102.2020.02.013
李子义, 贺子航, 卢惠君, 王玉成, 及晓宇
收稿日期:
2019-09-06
出版日期:
2020-03-05
发布日期:
2020-03-06
通讯作者:
及晓宇,E-mail:jixy0219@163.com
E-mail:jixy0219@163.com
作者简介:
李子义(1996-),男,硕士研究生,主要从事林木遗传育种方面的研究。
基金资助:
LI Zi-Yi, HE Zi-Hang, LU Hui-Jun, WANG Yu-Cheng, JI Xiao-Yu
Received:
2019-09-06
Online:
2020-03-05
Published:
2020-03-06
Supported by:
摘要: bHLH转录因子家族成员在植物生长发育、生理代谢及非生物胁迫响应过程中起重要作用。本研究选取拟南芥抗逆相关bHLH转录因子家族中AtUNE12基因为研究对象,对其进行耐盐功能初探。首先构建AtUNE12基因的植物过表达载体(pROKⅡ-AtUNE12),通过农杆菌介导的浸花法转化拟南芥,利用qRT-PCR技术检测获得T3代AtUNE12过表达转基因植株。在盐胁迫下,分析过表达AtUNE12与野生型拟南芥长势、根长及鲜重;比较过表达AtUNE12与野生型植株的电解质渗透率、失水率、MDA含量、POD与SOD活性及H2O2含量,鉴定AtUNE12基因是否具有耐盐能力。结果表明:过表达AtUNE12基因降低了拟南芥植株的失水率、电解质渗透率及MDA含量,保护细胞膜结构的完整性;增强了POD与SOD活性,降低了拟南芥植株内的H2O2含量,进而增强拟南芥植株的ROS清除能力,从而提高拟南芥的耐盐能力。
中图分类号:
李子义, 贺子航, 卢惠君, 王玉成, 及晓宇. 拟南芥AtUNE12基因的耐盐功能初探[J]. 植物研究, 2020, 40(2): 257-265.
LI Zi-Yi, HE Zi-Hang, LU Hui-Jun, WANG Yu-Cheng, JI Xiao-Yu. Study on Salt Tolerance of AtUNE12 Gene in Arabidopsis thaliana[J]. Bulletin of Botanical Research, 2020, 40(2): 257-265.
[1] Prasad K V S K,Xing D H,Reddy A S N.Vascular plant one-zinc-finger(VOZ)transcription factors are positive regulators of salt tolerance in Arabidopsis[J].International Journal of Molecular Sciences,2018,19(12):3731-3750. [2] Khan S A,Li M Z,Wang S M,et al.Revisiting the role of plant transcription factors in the battle against abiotic stress[J].International Journal of Molecular Sciences,2018,19(6):1634-1662. [3] Waseem M,Li Z G.Overexpression of tomato SlbHLH22 transcription factor gene enhances fruit sensitivity to exogenous phytohormones and shortens fruit shelf-life[J].Journal of Biotechnology,2019,299:50-56. [4] Liu W W,Tai H H,Li S S,et al.bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J].New Phytologist,2014,201(4):1192-1204. [5] Feller A,Machemer K,Braun E L,et al.Evolutionary and comparative analysis of MYB and bHLH plant transcription factor[J].The Plant Journal,2011,66(1):94-116. [6] 王翠,兰海燕.植物bHLH转录因子在非生物胁迫中的功能研究进展[J].生命科学研究:2016,20(4):358-364.Wang C,Lan H Y.Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses[J].Life Science Research,2016,20(4):358-364. [7] Reguera M,Peleg Z,Blumwald E.Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops[J].Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms,2012,1819(2):186-194. [8] Wei K F,Chen H Q.Comparative functional genomics analysis of bHLH gene family in rice,maize and wheat[J].BMC Plant Biology,2018,18(1):309. [9] Li X L,Zhang H M,Ai Q,et al.Two bHLH transcription factors,bHLH34 and bHLH104,regulate iron homeostasis in Arabidopsis thaliana[J].Plant Physiology,2016,170(4):2478-2493. [10] Liang G,Zhang H M,Li X L,et al.bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana[J].Journal of Experimental Botany,2017,68(7):1743-1755. [11] Cui Y,Chen C L,Cui M,et al.Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis[J].Molecular Plant,2018,11(9):1166-1183. [12] Yang T R,Hao L,Yao S F,et al.TabHLH1,a bHLH-type transcription factor gene in wheat,improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis[J].Plant Physiology and Biochemistry,2016,104:99-113. [13] Yang T R,Yao S F,Hao L,et al.Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J].Plant Cell Reports,2016,35(11):2309-2323. [14] 武明珠,李锋,王燃,等.烟草转录因子bHLH93基因的克隆及表达分析[J].烟草科技,2015,48(3):1-7.Wu M Z,Li F,Wang R,et al.Cloning and expression of transcription factor gene bHLH93 from Nicotiana tabacum[J].Tobacco Science & Technology,2015,48(3):1-7. [15] Zheng K J,Wang Y T,Wang S C.The non-DNA binding bHLH transcription factor Paclobutrazol Resistances are involved in the regulation of ABA and salt responses in Arabidopsis[J].Plant Physiology and Biochemistry,2019,139:239-245. [16] An J P,Li H H,Song L Q,et al.The molecular cloning and functional characterization of MdMYC2,a bHLH transcription factor in apple[J].Plant Physiology and Biochemistry,2016,108:24-31. [17] Chen H C,Cheng W H,Hong C Y,et al.The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways,respectively[J].Rice,2018,11(1):50-66. [18] Babitha K C,Ramu S V,Pruthvi V,et al.Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis[J].Transgenic Research,2013,22(2):327-341. [19] Xie X B,Li S,Zhang R F,et al.The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J].Plant,Cell &Environment,2012,35(11):1884-1897. [20] Huang X S,Wang W,Zhang Q,et al.A basic helix-loop-helix transcription factor,PtrbHLH,of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J].Plant Physiology,2013,162(2):1178-1194. [21] Yao X N,Cai Y R,Yu D Q,et al.bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana[J].Journal of Integrative Plant Biology,2018,60(8):691-702. [22] Babitha K C,Vemanna R S,Nataraja K N,et al.Overexpression of EcbHLH57 transcription factor from Eleusine coracana L.in tobacco confers tolerance to salt,oxidative and drought stress[J].PLoS One,2015,10(9):e0137098. [23] Chen H C,Hsieh-Feng V,Liao P C,et al.The function of OsbHLH068 is partially redundant with its homolog,AtbHLH112,in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis[J].Plant Molecular Biology,2017,94(4-5):531-548. [24] Wu H,Ye H Y,Yao R F,et al.OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice[J].Plant Science,2015,232:1-12. [25] Bruex A,Kainkaryam R M,Wieckowski Y,et al.A gene regulatory network for root epidermis cell differentiation in Arabidopsis[J].PLoS Genetics,2012,8(1):e1002446. [26] Selvarajan D,Mohan C,Dhandapani V,et al.Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L.under low temperature stress reveals genespotentially involved in cold acclimation[J].3 Biotech,2018,8(4):195. [27] Wang J,Zhang Q,Cui F,et al.Genome-wide analysis of gene expression provides new insights into cold responses in Thellungiella salsuginea[J].Frontiers in Plant Science,2017,8:713. [28] Rio D C,Ares M J R,Hannon G J,et al.Purification of RNA using TRIzol(TRI reagent)[J].Cold Spring Harbor Protocols,2010,2010(6):pdb.prot5439. [29] Zhang X R,Henriques R,Lin S S,et al.Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J].Nature Protocols,2006,1(2):641-646. [30] 李金璐,王硕,于婧,等.一种改良的植物DNA提取方法[J].植物学报,2013,48(1):72-78.Li J L,Wang S,Yu J,et al.A modified CTAB protocol for plant DNA extraction[J].Bulletin of Botany,2013,48(1):72-78. [31] Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods,2001,25(4):402-408. [32] 王关林,方宏筠.植物基因工程实验技术指南:2版[M].北京:科学出版社,2016:273-274,277-278.WANG G L,FANG H Y.Laboratory guide for plant genetic engineering:2nded[M].Beijing:Science Press,2016:273-274,277-278. [33] Ji X,Nie X,Liu Y,et al.A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J].Tree Physiology,2016,36(2):193-207. [34] Zhao Q,Xiang X H,Liu D,et al.Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBFpathway and reactive oxygen species homeostasis[J].Frontiers in Plant Science,2018,9:381. [35] Sun K L,Wang H Y,Xia Z L.The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco[J].Plant Science,2019,280:97-109. [36] Geng J J,Liu J H.The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene[J].Journal of Experimental Botany,2018,69(10):2677-2692. [37] Jin C,Huang X S,Li K Q,et al.Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes[J].Frontiers in Plant Science,2016,7:441. [38] Liu Y J,Ji X Y,Nie X G,et al.Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J].New Phytologist,2015,207(3):692-709. |
[1] | 刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(1): 1-7. |
[2] | 江转转, 龚莉, 宋亚玲. 拟南芥叶绿体分裂蛋白PARC6影响子叶与真叶的生长[J]. 植物研究, 2023, 43(5): 700-710. |
[3] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
[4] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[5] | 蔡圆圆, 夏季奔奔, 应文涵, 王洁瑶, 谢涛, 邢孔丫, 冯宣军, 华学军. 拟南芥线粒体蛋白突变体ssr1-2表型的详细鉴定与分析[J]. 植物研究, 2023, 43(3): 421-431. |
[6] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
[7] | 李麒, 闫思宇, 陈肃. 白桦BpERF98基因的遗传转化及非生物胁迫应答反应[J]. 植物研究, 2022, 42(1): 93-103. |
[8] | 金荷仙, 沈徐悦, 陈蓉蓉, 吴振, 申亚梅, 张冬梅. NaCl胁迫对白玉兰形态及生理特性的影响[J]. 植物研究, 2021, 41(4): 596-603. |
[9] | 武国凡, 成宏斌, 吴玉俊, 沈娟, 吴旺泽. CRISPR/Cas9介导靶向敲除拟南芥BRI1突变体的鉴定[J]. 植物研究, 2021, 41(3): 362-371. |
[10] | 张雨晴, 刘野, 曲春浦, 刘关君, 杨天天, 杨成君. 转基因PnDof30拟南芥非生物胁迫下的抗性分析[J]. 植物研究, 2020, 40(3): 407-415. |
[11] | 何好, 朱国庆, 陈诗雅, 徐畅, 金淑梅. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究, 2020, 40(2): 274-283. |
[12] | 王爽, 程玉祥, 夏德安. 拟南芥根毛功能基因AtGDPD-Like3关键氨基酸位点鉴定[J]. 植物研究, 2020, 40(1): 79-84. |
[13] | 李芃, 郇兆蔚, 丁兰. Rabdosinate调节生长素极性运输蛋白PIN1、PIN3和PIN4抑制拟南芥幼苗根生长[J]. 植物研究, 2019, 39(6): 908-916. |
[14] | 赵玮, 齐燕妮, 张建平, 赵利, 王利民, 谢亚萍, 王斌, 张艳萍. 胡麻资源萌发期耐盐综合性评价[J]. 植物研究, 2019, 39(6): 955-963. |
[15] | 李爽, 熊樱, RALF M;ller-Xing, 邢倩. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究, 2019, 39(5): 752-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||