植物研究 ›› 2025, Vol. 45 ›› Issue (4): 592-602.doi: 10.7525/j.issn.1673-5102.2025.04.011
收稿日期:
2025-03-22
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
韩榕
E-mail:hhwrsl@163.com
作者简介:
王建华(1988—),男,博士,讲师,主要从事植物逆境胁迫响应相关研究。
基金资助:
Jianhua WANG1,2, Huize CHEN2, Rong HAN2()
Received:
2025-03-22
Online:
2025-07-20
Published:
2025-07-25
Contact:
Rong HAN
E-mail:hhwrsl@163.com
摘要:
为了揭示叶面TiO2-NPs(二氧化钛纳米颗粒)预处理对UV-B胁迫下小麦幼苗生长抑制的缓解效应,以小麦(Triticum aestivum)为研究材料,在细胞水平、生理生化水平和基因水平综合研究UV-B胁迫和叶面TiO2-NPs预处理下小麦幼苗有丝分裂、DNA损伤、抗氧化酶系统和抗氧化相关基因表达特征。结果表明:叶面10 mg∙L-1 TiO2-NPs预处理可以显著缓解低剂量(5.04 kJ∙m-2)和高剂量(10.08 kJ∙m-2)UV-B胁迫对小麦幼苗生长的抑制作用。低剂量和高剂量UV-B胁迫下,叶面TiO2-NPs预处理小麦幼苗的株高比对照分别增加44.71%和127.43%,根长分别增加38.92%和159.10%,植株鲜质量分别增加50.03%和78.67%,干质量分别增加37.33%和126.84%。在低剂量和高剂量UV-B胁迫下,叶面TiO2-NPs预处理的小麦根尖细胞有丝分裂异常比例仅为对照的39.57%和28.63%,细胞内部嘧啶二聚体(CPDs)含量也较对照组分别降低了60.43%和48.81%。抗氧化系统相关试验结果显示,在低剂量和高剂量UV-B胁迫下,叶面TiO2-NPs预处理小麦叶片黄酮醇含量分别是对照的1.44倍和1.53倍,黄酮醇合成基因(CHS和CHI)和超氧化物歧化酶基因SOD的表达显著上调,提高了植物活性氧(ROS)清除能力。综上,叶面10 mg∙L-1 TiO2-NPs预处理可以显著增强小麦幼苗抗氧化系统活性,减少ROS对植物的损伤效应,提高植物对UV-B胁迫的耐受性。
中图分类号:
王建华, 陈慧泽, 韩榕. 叶面TiO2-NPs预处理对UV-B胁迫下小麦幼苗生长抑制的缓解效应[J]. 植物研究, 2025, 45(4): 592-602.
Jianhua WANG, Huize CHEN, Rong HAN. Alleviative Effects of Foliar TiO2-NPs Pretreatment on Wheat Seedling Growth under UV-B Stress[J]. Bulletin of Botanical Research, 2025, 45(4): 592-602.
表1
RT-qPCR引物序列
基因 Gene | 正向引物 Forward primer | 反向引物 Reverse primer |
---|---|---|
查尔酮合成酶 CHS | AAGATCACCAAGAGCGACCACAT | AGGATCTCCTCHGTNAGGTGC |
查尔酮异构酶 CHI | CGGCGAGTTCGAGAAGTTCAC | TTCCAGTAGGCGACGCAGTT |
超氧化物歧化酶 SOD | CAGGACCCTCTTGTGACCAAAG | CCAGTTCACCACCTTCCAGATG |
过氧化物酶 POD | ACTTCCACGACTGCTTTGTCCA | CATATACTCTCCAGCTGGGTCTTG |
肌动蛋白 ACTIN | GCCAACAGGGAGAAGATGACA | CATAGATTGGGACTGTGTGACTGAC |
表2
TiO2-NPs预处理和UV-B胁迫对小麦根尖细胞有丝分裂的影响
处理组 Treatment | 细胞总数 Total number of cells observed | 分裂期细胞总数 Total number of dividing cells | 异常分裂细胞总数 Total number of aberration cells | 异常分裂比例 Aberration percentage/% |
---|---|---|---|---|
T | 2 730 | 121 | 0 | 0e |
C | 3 215 | 147 | 0 | 0e |
LT | 2 964 | 134 | 7 | 5.31±1.23d |
L | 2 430 | 128 | 16 | 13.42±2.35b |
HT | 2 624 | 137 | 14 | 9.84±1.62c |
H | 2 507 | 118 | 27 | 34.37±5.28a |
[1] | WITZE A.Rare ozone hole opens over Arctic—and it’s big[J].Nature,2020,580:18-19. |
[2] | SHARMA A, SHARMA B, HAYES S,et al.UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight[J].Nature Communications,2019,10(1):4417. |
[3] | YANG Y, ZHANG L B, CHEN P,et al.UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development[J].The EMBO Journal,2020,39(2):e101928. |
[4] | LIANG T, MEI S L, SHI C,et al.UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis [J].Developmental Cell,2018,44(4):512-523.e5. |
[5] | WANG H J, LIU S H, WANG T L,et al.The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation[J].Plant Science,2020,298:110591. |
[6] | 韩榕,岳明,王勋陵.He-Ne激光对小麦幼苗增强UV-B辐射损伤的修复效应[J].西北植物学报,2002,22(2):263-269. |
HAN R, YUE M, WANG X L.The damage repair effects of He-Ne laser on wheat seedlings exposed to enhanced ultraviolet-B irradiation[J].Acta Botanica Boreali-Occidentalia Sinica,2002,22(2):263-269. | |
[7] | 韩榕,王勋陵,岳明,等.增强UV-B辐射对小麦体细胞分裂的影响[J].遗传学报,2002,29(6):537-541. |
HAN R, WANG X L, YUE M,et al.Effects of the enhanced UV-B radiation on the body cell mitosis of the wheat[J].Acta Genetica Sinica,2002,29(6):537-541. | |
[8] | PRIESTER J H, MORITZ S C, ESPINOSA K,et al.Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials[J].Science of the Total Environment,2017,579:1756-1768. |
[9] | LANDA P, VANKOVA R, ANDRLOVA J,et al.Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO,TiO2,and fullerene soot[J].Journal of Hazardous Materials,2012,241/242:55-62. |
[10] | USMAN M, FAROOQ M, WAKEEL A,et al.Nanotechnology in agriculture:current status,challenges and future opportunities[J].Science of the Total Environment,2020,721:137778. |
[11] | TIAN L Y, SHEN J P, SUN G X,et al.Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi(Brassica chinensis L.) rhizosphere grown in contaminated mine soil[J].Environmental Science & Technology,2020,54(20):13137-13146. |
[12] | KAH M, KOOKANA R S, GOGOS A,et al.A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues[J].Nature Nanotechnology,2018,13(8):677-684. |
[13] | MIKULA K, IZYDORCZYK G, SKRZYPCZAK D,et al.Controlled release micronutrient fertilizers for precision agriculture-a review[J].Science of the Total Environment,2020,712:136365. |
[14] | ULLAH S, ADEEL M, ZAIN M,et al.Physiological and biochemical response of wheat(Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil:a full life cycle study[J].Journal of Environmental Management,2020,263:110365. |
[15] | RAO S, SHEKHAWAT G S.Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea [J].3 Biotech,2016,6(2):244. |
[16] | BAKSHI M, LINÉ C, BEDOLLA D E,et al.Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants:a life cycle study[J].Journal of Hazardous Materials,2019,369:191-198. |
[17] | LIU J, WANG W X.The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna [J].Science of the Total Environment,2017,593/594:47-53. |
[18] | DEHKOURDI E H, MOSAVI M.Effect of anatase nanoparticles(TiO2) on parsley seed germination (Petroselinum crispum) in vitro[J].Biological Trace Element Research,2013,155(2):283-286. |
[19] | MIDDEPOGU A, HOU J, GAO X,et al.Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa [J].Ecotoxicology and Environmental Safety,2018,161:497-506. |
[20] | WANG G C, LUO Z K, HAN P F,et al.Critical carbon input to maintain current soil organic carbon stocks in global wheat systems[J].Scientific Reports,2016,6:19327. |
[21] | SHULL T E, KUREPA J, SMALLE J A.Anatase TiO2 nanoparticles induce autophagy and chloroplast degradation in thale cress(Arabidopsis thaliana)[J].Environmental Science & Technology,2019,53(16):9522-9532. |
[22] | CHEN H Z, HAN R.Characterization of actin filament dynamics during mitosis in wheat protoplasts under UV-B radiation[J].Scientific Reports,2016,6:20115. |
[23] | HEIKAL Y M, ŞUŢAN N A, RIZWAN M,et al.Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure[J].Chemosphere,2020,243:125430. |
[24] | SUN C, ZHAO C, WANG G H,et al.Cerium oxide nanoparticles alleviate enhanced UV-B radiation-induced stress in wheat seedling roots by regulating reactive oxygen species[J].Phyton-International Journal of Experimental Botany,2025,94(2):455-479. |
[25] | COX A, VENKATACHALAM P, SAHI S,et al.Silver and titanium dioxide nanoparticle toxicity in plants:a review of current research[J].Plant Physiology and Biochemistry,2016,107:147-163. |
[26] | SINGH J, LEE B K.Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants(Glycine max):a possible mechanism for the removal of Cd from the contaminated soil[J].Journal of Environmental Management,2016,170:88-96. |
[27] | ABDEL LATEF A A H, SRIVASTAVA A K, EL-SADEK M S A,et al.Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions[J].Land Degradation & Development,2018,29(4):1065-1073. |
[28] | SUN C, ZHAO C, WANG G H,et al.Cerium oxide nanoparticles ameliorate Arabidopsis thaliana root damage under UV-B stress by modulating the cell cycle and auxin pathways[J].Protoplasma,2025,262(4):895-913. |
[29] | ZUO R Z, LIU H G, XI Y,et al.Nano-SiO2 combined with a surfactant enhanced phenanthrene phytoremediation by Erigeron annuus(L.) Pers[J].Environmental Science and Pollution Research,2020,27(16):20538-20544. |
[30] | SENDRA M, YESTE P M, MORENO-GARRIDO I,et al.CeO2 NPs,toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity[J].Science of the Total Environment,2017,590/591:304-315. |
[31] | VANHAELEWYN L, PRINSEN E, VAN DER STRA-ETEN D,et al.Hormone-controlled UV-B responses in plants[J].Journal of Experimental Botany,2016,67(15):4469-4482. |
[32] | MORADI RIKABAD M, POURAKBAR L, SIAVASH MOGHADDAM S,et al.Agrobiological,chemical and antioxidant properties of saffron(Crocus sativus L.) exposed to TiO2 nanoparticles and ultraviolet-B stress[J].Industrial Crops and Products,2019,137:137-143. |
[1] | 薛永常, 王贺贤, 赵娣, 郭静, 李澳. 植物萜类化合物生物合成及其功能研究进展[J]. 植物研究, 2025, 45(4): 479-490. |
[2] | 田林平, 韩文哲, 吴军, 马元东, 齐雨, 王兆宁, 李春明, 李海霞, 刘焕臻, 范海娟. 平茬对东北槭嫩枝幼化及扦插生根的影响[J]. 植物研究, 2025, 45(2): 228-240. |
[3] | 彭广州, 刘建飞, 王巧欣, 付可琢, 张烨, 张晨曦, 詹亚光. 循环复幼对水曲柳生长繁殖及生理的影响[J]. 植物研究, 2024, 44(5): 721-729. |
[4] | 彭春雪, 崔雪梅, 沈海龙. 暴马丁香成熟胚愈伤组织和体胚诱导及其生理状态解析[J]. 植物研究, 2021, 41(4): 557-563. |
[5] | 张福臻, 刘方惠, 陈鑫欣, 孙静, 葛荣朝. 水稻OsRPK2基因的克隆及功能初步鉴定[J]. 植物研究, 2021, 41(4): 604-613. |
[6] | 彭春雪, 崔雪梅, 刘春苹, 杨玲, 王秋水, 沈海龙. 3种抗褐化剂影响水曲柳体胚发生的生理分析[J]. 植物研究, 2019, 39(2): 252-258. |
[7] | 李春英, 张晶晶, 赵春建, 姜宏伟, 任雪婷, 苏伟然, 关佳晶, 李玉正. 3-甲基-1-丁醇对玉米和小麦种子萌发的影响[J]. 植物研究, 2018, 38(5): 785-789. |
[8] | 艾可筠, 朱尧, 侯和胜, 佟少明. 普通小麦TaNAC1基因的表达及在拟南芥中的遗传转化[J]. 植物研究, 2016, 36(6): 886-894. |
[9] | 张权1;姚小华1*;滕建华2;邵慰忠3;傅松玲4. 薄壳山核桃根系水浸提液对2种作物种子萌发及幼苗生长的影响[J]. 植物研究, 2016, 36(2): 204-210. |
[10] | 曲丹;王慧梅*;任洁. 碳源对迷迭香悬浮培养细胞的生长、迷迭香酸积累及抗氧化酶活性的影响[J]. 植物研究, 2015, 35(4): 623-627. |
[11] | 乔石瑶;刘晓颖;王艳红;肖莹;孙世南;王振英*. 栽培小麦Brock白粉菌诱导早期应答基因SSH文库构建及分析[J]. 植物研究, 2015, 35(1): 60-67. |
[12] | 彭礼琼;金则新*;王强;. 模拟酸雨对濒危物种夏蜡梅幼苗生理生态特性的影响[J]. 植物研究, 2013, 33(2): 202-207. |
[13] | 王勇;覃建兵;范玲;祝长青*. 基因枪法获得无选择标记的1Dx5基因表达的转基因小麦[J]. 植物研究, 2013, 33(2): 191-196. |
[14] | 刘晓颖;段爽;王振英;高越;彭永康*. 由细胞质雄性不育系(CMS)配制的小麦F1杂种优势形成机理的比较蛋白质组分析[J]. 植物研究, 2013, 33(1): 51-57. |
[15] | 魏学玲;史如霞;贾凌云;刘艳;张辉;姜羽;杨颖丽*. 外源一氧化氮对铅胁迫下小麦种子萌发及幼苗生理特性的影响[J]. 植物研究, 2011, 31(1): 34-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||