植物研究 ›› 2024, Vol. 44 ›› Issue (5): 793-804.doi: 10.7525/j.issn.1673-5102.2024.05.016
• 分子生物学 • 上一篇
成志远1, 张燕江1(), 申岳1, 李广2, 陈勤3, 李杰2, 邢彦宏1
收稿日期:
2023-10-11
出版日期:
2024-09-20
发布日期:
2024-09-24
通讯作者:
张燕江
E-mail:zhyjjdw@126.com
作者简介:
成志远(1998—),男,硕士研究生,主要从事根际营养生态研究。
基金资助:
Zhiyuan CHENG1, Yanjiang ZHANG1(), Yue SHEN1, Guang LI2, Qin CHEN3, Jie LI2, Yanhong XING1
Received:
2023-10-11
Online:
2024-09-20
Published:
2024-09-24
Contact:
Yanjiang ZHANG
E-mail:zhyjjdw@126.com
摘要:
为探究兰州百合(Lilium davidii var. unicolor)响应自毒胁迫的代谢机制,以1年生(Lily1)、2年生(Lily2)和3年生(Lily3)兰州百合为研究对象,采用气相色谱-质谱(GC-MS)技术分析了不同连作年限兰州百合的代谢组学变化,在其提取物中共检测和鉴定出124种代谢物。利用R软件对样品进行归一化,通过正交偏最小二乘判别分析(OPLS-DA)寻找差异代谢物,并筛选相关代谢物途径进行联合分析。结果表明:Lily1与Lily2的代谢组间存在明显差异,共有16种呈上调的差异代谢物(脂质类、黄酮类、糖类及酚类),且均上调;显著富集至酪氨酸代谢、丙酸代谢和类黄酮生物合成代谢通路。其中脂质类、黄酮类和糖类物质含量的提升表明在兰州百合连作的第2年,自身通过积极合成脂质类、黄酮类和糖类物质来响应自毒胁迫。Lily1与Lily3的代谢组间共有21种差异代谢物,包括1种上调代谢物(3-α-甘露二糖)和20种下调代谢物(胺类、酸类和脂质类);显著富集至5条代谢通路,分别为托烷、哌啶和吡啶生物碱的生物合成、磷酸盐和次磷酸盐的代谢、赖氨酸降解、谷胱甘肽代谢和D-氨基酸代谢。Lily2与Lily3组间同样有21种差异代谢物,唯一上调代谢物也为3-α-甘露二糖。这表明,在兰州百合连作的第3年,糖类物质作为直接参与维持细胞膜稳定性的碳水化合物,积极响应自毒胁迫。20种下调代谢物分别为胺类、酸类和脂质类,仅显著富集至丙酸代谢和类黄酮生物合成代谢通路。
中图分类号:
成志远, 张燕江, 申岳, 李广, 陈勤, 李杰, 邢彦宏. 兰州百合响应自毒胁迫的代谢组学分析[J]. 植物研究, 2024, 44(5): 793-804.
Zhiyuan CHENG, Yanjiang ZHANG, Yue SHEN, Guang LI, Qin CHEN, Jie LI, Yanhong XING. Metabolomics Analysis of Lilium davidii var. unicolor in Response to Autotoxicity Stress[J]. Bulletin of Botanical Research, 2024, 44(5): 793-804.
1 | SHANG Q H, ZHAO X, LI Y Y,et al.First report of Fusarium tricinctum causing stem and root rot on Lanzhou lily(Lilium davidii var.unicolor) in China[J].Plant Disease,2014,98(7):999. |
2 | MATSUO Y, TAKAKU R, MIMAKI Y.Novel steroidal glycosides from the bulbs of Lilium pumilum [J].Molecules,2015,20(9):16255-16265. |
3 | CHUNG I M, MILLER D A.Effect of alfalfa plant and soil extracts on germination and growth of alfalfa[J].Agronomy Journal,1995,87(4):762-767. |
4 | DONG Q F, CHENG Z H.Study on allelopathy of top part aqueous extracts of lily plant[J].Acta Agriculturae Boreali-Occidentalis Sinica,2006(2):144-147. |
5 | 董小艳,程智慧,张亮.百合根系分泌物对4种观赏植物的化感作用[J].西北农林科技大学学报(自然科学版),2008,36(9):113-117. |
DONG X Y, CHENG Z H, ZHANG L.Allelopathy of lily root exudates on some receiver ornamental plants[J].Journal of Northwest A & F University(Natural Science Edition),2008,36(9):113-117. | |
6 | 李小玲,华智锐.百合不同器官水浸液对几种观赏植物的化感效应[J].山西农业科学,2015,43(11):1403-1407. |
LI X L, HUA Z R.Allelopathy effect of aqueous extraction from different organs of lily on several of ornamental plants[J].Journal of Shanxi Agricultural Sciences,2015,43(11):1403-1407. | |
7 | 童晓翠,庞珂佳,王俊儒,等.卷丹鳞茎水浸提液对生菜化感作用的研究[J].西北林学院学报,2008,23(5):154-156. |
TONG X C, PANG K J, WANG J R,et al.Allelopathic effect of the aqueous extracts from the bulbs of Lilium lancifolium on lettuce[J].Journal of Northwest Forestry University,2008,23(5):154-156. | |
8 | WU Z J, XIE Z K, YANG L,et al.Identification of autotoxins from root exudates of Lanzhou lily(Lilium davidii var.unicolor)[J].Allelopathy Journal,2015,35(1):35-48. |
9 | YAN Z Q, HE X F, GUO K,et al.Allelochemicals from the rhizosphere of Lanzhou lily:discovery of the autotoxic compounds of a bulb crop[J].Scientia Horticulturae,2019,250(7):121-126. |
10 | INDERJIT, KEATING K I.Allelopathy:principles,procedures,processes,and promises for biological control[M]//SPARKS D L.Advances in agronomy:Vol.67.San Diego:Academic Press,1999:141-231. |
11 | WU B, LONG Q L, GAO Y,et al.Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq[J].BMC Genomics,2015,16:1010. |
12 | HUANG L F, SONG L X, XIA X J,et al.Plant-soil feedbacks and soil sickness:from mechanisms to application in agriculture[J].Journal of Chemical Ecology,2013,39:232-242. |
13 | CUI J J, ZHANG E H, ZHANG X H,et al.Effects of 2,4-di-tert-butylphenol at different concentrations on soil functionality and microbial community structure in the Lanzhou lily rhizosphere[J].Applied Soil Ecology,2022,172:104367. |
14 | YANG M, CHUAN Y C, GUO C W,et al. Panax notoginseng root cell death caused by the autotoxic ginsenoside Rg1 is due to over-accumulation of ROS,as revealed by transcriptomic and cellular approaches[J].Frontiers in Plant Science,2018,9:264. |
15 | LI Z F, HE C L, WANG Y,et al.Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch[J].Scientific Reports,2016,6:33962. |
16 | SINGH H P, BATISH D R, KOHLI R K.Autotoxicity:concept,organisms,and ecological significance[J].Critical Reviews in Plant Sciences,1999,18(6):757-772. |
17 | YUAN J, LIU R P, SHENG S S,et al.Integrated metabolomic and transcriptomic profiling revealed coping mechanisms of the edible and medicinal homologous plant Plantago asiatica L.cadmium resistance[J].Open Life Sciences,2022,17(1):1347-1359. |
18 | HOWE G A, JANDER G.Plant immunity to insect herbivores[J].Annual Review of Plant Biology,2008,59:41-66. |
19 | ZHANG W J, WANG S, YANG J,et al.Glycosylation of plant secondary metabolites:regulating from chaos to harmony[J].Environmental and Experimental Botany,2022,194:104703. |
20 | JANZEN D H.The ecology and evolutionary biology of seed chemistry as relates to seed predation[M]//HARBORNE J B.Biochemical aspects of plant and animal coevolution.New York:Academic Press,1978:163-206. |
21 | VON RAD U, HÜTTL R, LOTTSPEICH F,et al.Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize[J].The Plant Journal,2001,28(6):633-642. |
22 | GHATAK A, CHATURVEDI P, WECKWERTH W.Metabolomics in plant stress physiology[M]//VARSHNEY R,PANDEY M,CHITIKINENI A.Plant genetics and molecular biology:Vol.164.Cham:Springer,2018:187-236. |
23 | Anonymous.Optimizing GC-MS methods[J].LCGC North America,2013,31(12):1026. |
24 | 潘曦,刘辉,王昊,等.基于近红外光谱和OPLS-DA的不同牌号卷烟分类识别方法研究[J].分析测试学报,2020,39(11):1385-1391. |
PAN X, LIU H, WANG H,et al.Research on classification and recognition methods for different grades of cigarettes based on near-infrared spectroscopy and OPLS-DA[J].Journal of Instrumental Analysis,2020,39(11):1385-1391. | |
25 | WANG P J, GU M Y, SHAO S X,et al.Changes in non-volatile and volatile metabolites associated with heterosis in tea plants(Camellia sinensis)[J].Journal of Agricultural and Food Chemistry,2022,70(9):3067-3078. |
26 | YU J Q, MATSUI Y.Phytotoxic substances in root exudates of cucumber(Cucumis sativus L.)[J].Journal of Chemical Ecology,1994,20(1):21-31. |
27 | ZHANG B, LI X Z, WANG F Q,et al.Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’[J].Plant and Soil,2016,407(1/2):307-322. |
28 | DENG J J, ZHANG Y L, HU J W,et al.Autotoxicity of phthalate esters in tobacco root exudates:effects on seed germination and seedling growth[J].Pedosphere,2017,27(6):1073-1082. |
29 | THI A T P, BORREL-FLOOD C, SILVA J V DA,et al.Effects of water stress on lipid metabolism in cotton leaves[J].Phytochemistry,1985,24(4):723-727. |
30 | PHAM THI A T, DE PAULA F M, HERBERT G,et al.Effects of water stress on molecular species composition of polar lipids from Vigna unguiculata leaves[M]//BIACS P A,GRUIZ K,KREMMER T.Biological role of plant lipids.Boston:Springer,1989:531-532. |
31 | WENDEL T, JÜTTNER F.Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms[J].Phytochemistry,1996,41(6):1445-1449. |
32 | CASOTTI R, MAZZA S, BRUNET C,et al.Growth inhibition and toxicity of the diatom aldehyde 2-trans,4-trans-decadienal on Thalassiosira weissflogii(Bacillariophyceae)[J].Journal of Phycology,2005,41(1):7-20. |
33 | PEER W A, MURPHY A S.Flavonoids and auxin transport:modulators or regulators?[J].Trends in Plant Science,2007,12(12):556-563. |
34 | TAYLOR L P, GROTEWOLD E.Flavonoids as developmental regulators[J].Current Opinion in Plant Biology,2005,8(3):317-323. |
35 | MA D Y, SUN D X, WANG C Y,et al.Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress[J].Plant Physiology and Biochemistry,2014,80(3):60-66. |
36 | NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K,et al.Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J].The Plant Journal,2014,77(3):367-379. |
37 | SAHSAH Y, CAMPOS P, GAREIL M,et al.Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress[J].Physiologia Plantarum,1998,104(4):577-586. |
38 | YAZAKI K.ABC transporters involved in the transport of plant secondary metabolites[J].Febs Letters,2006,580(4):1183-1191. |
39 | BAXTER I R, YOUNG J C, ARMSTRONG G,et al.A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(7):2649-2654. |
40 | DUXBURY C L, LEGGE R L, PALIYATH G,et al.Alterations in membrane protein conformation in response to senescence-related changes[J].Phytochemistry,1991,30(1):63-68. |
41 | JANCEWICZ A L, GIBBS N M, MASSON P H.Cadaverine’s functional role in plant development and environmental response[J].Frontiers in Plant Science,2016,7(2):75-81. |
42 | TOMAR P C, LAKRA N, MISHRA S N.Effect of cadaverine on Brassica juncea(L.) under multiple stress[J].Indian Journal of Experimental Biology,2013,51(9):758-763. |
43 | BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M,et al.A central integrator of transcription networks in plant stress and energy signaling[J].Nature,2007,448(7156):938-942. |
44 | PENCE V C, DUNFORD S S, REDELLA S.Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts[J].Journal of Plant Physiology,2005,162(12):1331-1337. |
45 | DONG C J, WANG X L, SHANG Q M.Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings[J].Scientia Horticulturae,2011,129(4):629-636. |
46 | POÓR P, GÉMES K, HORVÁTH F,et al.Salicylic acid treatment via the rooting medium interferes with stomatal response,CO2 fixation rate and carbohydrate metabolism in tomato,and decreases harmful effects of subsequent salt stress[J].Plant Biology,2011,13(1):105-114. |
[1] | 任艳君, 郭晓瑞, 于子煊, 吴可心, 孙宇, 陈宁, 油乔木, 邢凯鑫. 变温层积不同阶段刺五加种子萌发生理及代谢特点[J]. 植物研究, 2024, 44(4): 576-589. |
[2] | 张衡锋, 何阳武, 张焕朝, 韦庆翠. 紫薇响应盐胁迫和碱胁迫的代谢组分析[J]. 植物研究, 2024, 44(3): 420-430. |
[3] | 任艳君, 孙宇, 郭晓瑞, 徐明远, 邵文达, 吴可心. 基于GC-MS分析刺五加和短梗五加不同器官的代谢差异特性[J]. 植物研究, 2023, 43(3): 439-446. |
[4] | 吴艳, 李赛, 吴可心, 穆立蔷. 基于GC-MS的野生和‘鲁赫’刺蔷薇叶片代谢差异研究[J]. 植物研究, 2022, 42(6): 1070-1078. |
[5] | 潘立本, 闫雪, 刘佳, 吴可心, 刘洋, 刘少冲. 东北林下早春植物开花的生理特征研究[J]. 植物研究, 2022, 42(4): 657-666. |
[6] | 宋莹, 吴可心, 邵文达, 刘昱利, 刘佳, 刘洋, 唐中华. 刺五加和短梗五加叶片初生代谢的发育特异性调控研究[J]. 植物研究, 2022, 42(2): 268-277. |
[7] | 刘龙桀, 吴可心, 刁云飞, 李中跃, 穆立蔷. 基于GC-MS分析东北红豆杉野生种与栽培种的代谢差异[J]. 植物研究, 2021, 41(5): 798-806. |
[8] | 赵晓菊, 张奕婷, 刘佳, 刘洋, 唐中华. 一氧化氮参与盐胁迫下长春花酚类代谢的调控研究[J]. 植物研究, 2021, 41(4): 633-640. |
[9] | 谭永佳, 高翠芳, 陈学林. 不同海拔细叶亚菊挥发油成分的比较[J]. 植物研究, 2020, 40(5): 782-788. |
[10] | 智慧, 艾丹, 吴可心, 郭云, 徐明远, 唐中华. 基于GC-MS代谢组学技术委陵菜与星毛委陵菜的初生代谢比较研究[J]. 植物研究, 2020, 40(5): 718-727. |
[11] | 朱小洁, 周翔宇, 范航, 高喜凤, 杨蕾. 9种唇形科芳香植物挥发性萜类成分的比较分析[J]. 植物研究, 2020, 40(5): 696-705. |
[12] | 尹明华, 邓红根, 蒋妍, 万琳, 吴丽霞, 凌飞, 汪金华. 黄独微型块茎低温离体保存的GC/MS代谢组学分析[J]. 植物研究, 2018, 38(2): 238-246. |
[13] | 葛丽娜;韩雪;任珂珂;章甫;彭永宇;毕淑峰*. 火棘花挥发油化学成分的GC-MS分析及抗氧化活性研究[J]. 植物研究, 2014, 34(2): 276-281. |
[14] | 张丽增;米霞;薛水玉;李震宇*;秦雪梅. 基于色谱技术的款冬花蕾与花梗代谢组成差异分析[J]. 植物研究, 2014, 34(2): 258-265. |
[15] | 支海娟;孙海峰;支鹏;李震宇*;秦雪梅. 基于NMR的植物代谢组学技术研究款冬花蕾动态化学成分变化[J]. 植物研究, 2012, 32(4): 458-466. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||