Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 455-467.DOI: 10.1016/j.pld.2022.02.002
• Research paper • Previous Articles Next Articles
Ting-Shen Hana,b,c, Zheng-Yan Hua,d, Zhi-Qiang Dua,d, Quan-Jing Zhenga,d, Jia Liua,b, Thomas Mitchell-Oldsc, Yao-Wu Xinga,b
Received:
2022-01-18
Revised:
2022-02-22
Online:
2022-10-14
Published:
2022-09-25
Supported by:
Ting-Shen Hana,b,c, Zheng-Yan Hua,d, Zhi-Qiang Dua,d, Quan-Jing Zhenga,d, Jia Liua,b, Thomas Mitchell-Oldsc, Yao-Wu Xinga,b
通讯作者:
Ting-Shen Han,E-mail:hantingshen@xtbg.ac.cn;Yao-Wu Xing,E-mail:ywxing@xtbg.org.cn
基金资助:
Ting-Shen Han, Zheng-Yan Hu, Zhi-Qiang Du, Quan-Jing Zheng, Jia Liu, Thomas Mitchell-Olds, Yao-Wu Xing. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot[J]. Plant Diversity, 2022, 44(05): 455-467.
Ting-Shen Han, Zheng-Yan Hu, Zhi-Qiang Du, Quan-Jing Zheng, Jia Liu, Thomas Mitchell-Olds, Yao-Wu Xing. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot[J]. Plant Diversity, 2022, 44(05): 455-467.
[1] Al-Shehbaz, I.A. 2016. Brassicaceae. In:Hong D-Y ed. Flora of the Pan-Himalaya. Cambridge University Press, Cambridge, UK. pp. 275-288 [2] Alonso-Blanco, C., Andrade, J., Becker, C., et al., 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481-491 [3] An, Z., Clemens, S.C., Shen, J., et al., 2011. Glacial-interglacial Indian summer monsoon dynamics. Science 333, 719-723 [4] Arnold, B.J., Lahner, B., DaCosta, J.M., et al., 2016. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci. U.S.A. 113, 8320-8325 [5] Arrigo, N., Barker, M.S. 2012. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15, 140-146 [6] Baniaga, A.E., Marx, H.E., Arrigo, N., et al., 2020. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68-78 [7] Barker, M.S., Arrigo, N., Baniaga, A.E., et al., 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210, 391-398 [8] Bleeker, W., Weber-Sparenberg, C., Hurka, H. 2002. Chloroplast DNA variation and biogeography in the genus Rorippa scop.(Brassicaceae). Plant Biol. 4, 104-111 [9] Blischak, P.D., Latvis, M., Morales-Briones, D.F., et al., 2018. Fluidigm2PURC:automated processing and haplotype inference for double-barcoded PCR amplicons. Appl. Plant Sci. 6, 1-6 [10] Bomblies, K. 2020. When everything changes at once:finding a new normal after genome duplication. Proc. Royal Soc. B. 287, 1-14 [11] Brochmann, C., Brysting, A.K., Alsos, I.G., et al., 2004. Polyploidy in arctic plants. Biol. J. Linn. Soc. Lond. 82, 521-536 [12] Cai, L., Ma, H. 2016. Using nuclear genes to reconstruct angiosperm phylogeny at the species level:a case study with Brassicaceae species. J. Systemat. Evol. 54, 438-452 [13] Cauvy-Fraunie, S., Dangles, O. 2019. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675-1685 [14] Certner, M., Sudova, R., Weiser, M., et al., 2019. Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae). New Phytol. 221, 1117-1127 [15] Chalk, T.B., Hain, M.P., Foster, G.L., et al., 2017. Causes of ice age intensification across the Mid-Pleistocene Transition. Proc. Natl. Acad. Sci. U.S.A. 114, 13114-13119 [16] Chao, D.-Y., Dilkes, B., Luo, H., et al., 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341, 658-659 [17] Clement, M., Posada, D., Crandall, K.A. 2000. TCS:a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657-1659 [18] Comai, L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836-846 [19] Crawley, M.J. 2013. The R Book (2nd). John Wiley&Sons, [20] Dolezel, J., Greilhuber, J., Suda, J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233-2244 [21] Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 [22] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [23] Fawcett, J.A., Van de Peer, Y. 2010. Angiosperm polyploids and their road to evolutionary success. Trends Ecol. Evol. 2, 13-21 [24] Fick, S.E., Hijmans, R.J. 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315 [25] Folk, R.A., Siniscalchi, C.M., Soltis, D.E. 2020. Angiosperms at the edge:extremity, diversity, and phylogeny. Plant Cell Environ. 43, 2871-2893 [26] Gadgil, M., Solbrig, O.T. 1972. The concept of r-and K-selection:evidence from wild flowers and some theoretical considerations. Am. Nat. 106, 14-31 [27] Gamisch, A. 2019. Oscillayers:a dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Global Ecol. Biogeogr. 28, 1552-1560 [28] Guo, X., Liu, J., Hao, G., et al., 2017. Plastome phylogeny and early diversification of Brassicaceae. BMC Genom. 18, 1-9 [29] Han, T.-S., Wu, Q., Hou, X.-H., et al., 2015. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). Mol. Plant 8, 427-438 [30] Han, T.-S., Zheng, Q.-J., Onstein, R.E., et al., 2020. Polyploidy promotes species diversification of Allium through ecological shifts. New Phytol. 225, 571-583 [31] Hegarty, M.J., Hiscock, S.J. 2008. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435-R444 [32] Hijmans, R.J., Guarino, L., Mathur, P. 2012. DIVA-GIS Version 7.5 [33] Hu, Z., Zheng, Q., Mu, Q., et al., 2021. The mating system and reproductive assurance of Rorippa elata (Brassicaceae) across latitude. Biodivers. Sci. 29, 712-721 [34] Huynh, S., Broennimann, O., Guisan, A., et al., 2020. Eco-genetic additivity of diploids in allopolyploid wild wheats. Ecol. Lett. 23, 663-673 [35] Jonsell, B. 1968. Studies in the North-West European Species of Rorippa S. Str. Uppsala, Sweden:Acta Universitatis Upsaliensis. 1-221 [36] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649 [37] Kellogg, E.A. 2016. Has the connection between polyploidy and diversification actually been tested? Curr. Opin. Plant Biol. 30, 25-32 [38] Koch, M.A., Haubold, B., Mitchell-Olds, T. 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17, 1483-1498 [39] Koenig, D., Weigel, D. 2015. Beyond the thale:comparative genomics and genetics of Arabidopsis relatives. Nat. Rev. Genet. 16, 285-298 [40] Korner, C. 2020. Plant adaptations to alpine environments. In:Goldstein MI, DellaSala DA eds. Encyclopedia of the World's Biomes. Elsevier, Oxford. pp. 355-361 [41] Leitch, A., Leitch, I. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320, 481-483 [42] Les, D.H. 2018. Core Eudicots:Dicotyledons IV:"Rosid" Tricolpates:Malvid Rosids (Eurosids II):Order 9:Brassicales:Family 2:Brassicaceae:7. Rorippa. Aquatic Dicotyledons of North America:Ecology, Life History, and Systematics. CRC Press. pp. 398-406 [43] Levin, D.A. 2019. Why polyploid exceptionalism is not accompanied by reduced extinction rates. Plant Systemat. Evol. 305, 1-11 [44] Li, J., Feng, Z., Zhou, S. 1996. The vestiges of Quaternary glaciation in the Hengduan Mountains region. In:Li J, Su Z eds. Glacier in the Hengduan Mountains. Science Press, Beijing, China. pp. 157-173 [45] Li, Z., McKibben, M.T.W., Finch, G.S., et al., 2021. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387-410 [46] Liu, S., Kruse, S., Scherler, D., et al., 2021. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat. Commun. 12, 1-9 [47] Madlung, A. 2013. Polyploidy and its effect on evolutionary success:old questions revisited with new tools. Heredity 110, 99-104 [48] Mandakova, T., Marhold, K., Lysak, M.A. 2014. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201, 982-992 [49] Mao, K.-S., Wang, Y., Liu, J.-Q. 2021. Evolutionary origin of species diversity on the Qinghai-Tibet plateau. J. Systemat. Evol. 42, 1142-1158 [50] Matzke, N.J. 2018. BioGeoBEARS:BioGeography with Bayesian (And Likelihood) Evolutionary Analysis with R Scripts. Version 1.1.1 [51] Mayrose, I., Zhan, S.H., Rothfels, C.J., et al., 2011. Recently formed polyploid plants diversify at lower rates. Science 333, 1257-1257 [52] Molau, U. 1993. Relationships between flowering phenology and life history strategies in tundra plants. Arctic Antarct. Alpine Res. 25, 391-402 [53] Muellner-Riehl, A.N. 2019. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front. Plant Sci. 10, 1-18 [54] Nakayama, H., Fukushima, K., Fukuda, T., et al., 2014. Molecular phylogeny determined using chloroplast DNA inferred a new phylogenetic relationship of Rorippa aquatica (Eaton) EJ Palmer&Steyermark (Brassicaceae)-lake cress. Am. J. Plant Sci. 5, 48-54 [55] Nie, Z.-L., Wen, J., Gu, Z.-J., et al., 2005. Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Ann. Mo. Bot. Gard. 92, 275-306 [56] Novikova, P.Y., Hohmann, N., Van de Peer, Y. 2018. Polyploid Arabidopsis species originated around recent glaciation maxima. Curr. Opin. Plant Biol. 42, 8-15 [57] Otto, S.P. 2007. The evolutionary consequences of polyploidy. Cell 131, 452-462 [58] Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259 [59] R Core Team. 2018. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria [60] Rahbek, C., Borregaard, M.K., Antonelli, A., et al., 2019. Building mountain biodiversity:geological and evolutionary processes. Science 365, 1114-1119 [61] Ramsey, J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096-7101 [62] Rice, A., Smarda, P., Novosolov, M., et al., 2019. The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265-273 [63] Roman-Palacios, C., Molina-Henao, Y.F., Barker, M.S. 2020. Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae. Proc. Royal Soc. B. 287, 1-9 [64] Rothfels, C.J. 2021. Polyploid phylogenetics. New Phytol. 230, 66-72 [65] Rothfels, C.J., Pryer, K.M., Li, F.W. 2017. Next-generation polyploid phylogenetics:rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytol. 213, 413-429 [66] Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6:DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302 [67] Santos, A.M., Cabezas, M.P., Tavares, A.I., et al., 2015. tcsBU:a tool to extend TCS network layout and visualization. Bioinformatics 32, 627-628 [68] Schmickl, R., Yant, L. 2021. Adaptive introgression:how polyploidy reshapes gene flow landscapes. New Phytol. 230, 457-461 [69] Selmecki, A.M., Maruvka, Y.E., Richmond, P.A., et al., 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519, 349-352 [70] Slotte, T., Hazzouri, K.M., Agren, J.A., et al., 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet. 45, 831-835 [71] Soltis, D.E., Segovia-Salcedo, M.C., Jordon-Thaden, I., et al., 2014. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al.(2011). New Phytol. 202, 1105-1117 [72] Soltis, P.S., Soltis, D.E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051-7057 [73] Spoelhof, J.P., Keeffe, R., McDaniel, S.F. 2020. Does reproductive assurance explain the incidence of polyploidy in plants and animals? New Phytol. 227, 14-21 [74] Stanford, A.M., Harden, R., Parks, C.R. 2000. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am. J. Bot. 87, 872-882 [75] Stebbins, G.L. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold, London, UK [76] Stebbins, G.L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Mo. Bot. Gard. 72, 824-832 [77] Stinchcombe, J.R., Caicedo, A.L., Hopkins, R., et al., 2005. Vernalization sensitivity in Arabidopsis thaliana (Brassicaceae):the effects of latitude and FLC variation. Am. J. Bot. 92, 1701-1707 [78] Stockenhuber, R., Zoller, S., Shimizu-Inatsugi, R., et al., 2015. Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing. PLoS One 10, 1-19 [79] Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166 [80] Sun, Y., Abbott, R.J., Li, L., et al., 2014. Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau:homoploid hybrid origin and Pleistocene expansion. Mol. Ecol. 23, 343-359 [81] Sun, Y., McManus, J.F., Clemens, S.C., et al., 2021. Persistent orbital influence on millennial climate variability through the Pleistocene. Nat. Geosci. 14, 812-818 [82] Taberlet, P., Gielly, L., Pautou, G., et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105-1109 [83] te Beest, M., Le Roux, J.J., Richardson, D.M., et al., 2012. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19-45 [84] Thomas, G.W.C., Ather, S.H., Hahn, M.W. 2017. Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Syst. Biol. 66, 1007-1018 [85] Van de Peer, Y., Ashman, T.-L., Soltis, P.S., et al., 2021. Polyploidy:an evolutionary and ecological force in stressful times. Plant Cell 33, 11-26 [86] Van de Peer, Y., Mizrachi, E., Marchal, K. 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424 [87] Van Drunen, W.E., Husband, B.C. 2019. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms. New Phytol. 224, 1266-1277 [88] Wallis, G.P., Waters, J.M., Upton, P., et al., 2016. Transverse alpine speciation driven by glaciation. Trends Ecol. Evol. 31, 916-926 [89] Wang, J.-J., Peng, Z.-B., Sun, H., et al., 2017. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet plateau and hengduan mountains. Biodivers. Sci. 25, 218-225 [90] Wang, Z., Jiang, Y., Bi, H., et al., 2021. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208-222 [91] Wen, J., Zhang, J., Nie, Z.-L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan plateau. Front. Genet. 5, 1-16 [92] White, T.J., Bruns, T., Lee, S., et al.,. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Sninsky JJ, Gelfand DH, White TJ, Innis MA eds. PCR Protocols:a Guide to Methods and Applications. Academic Press, San Diego, California, USA. pp. 315-322 [93] Wu, S., Han, B., Jiao, Y. 2020. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol. Plant 13, 59-71 [94] Wu, S., Wang, Y., Wang, Z., et al., 2022. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol., 10.1111/nph.17956 [95] Yang, R., Folk, R., Zhang, N., et al., 2019. Homoploid hybridization of plants in the Hengduan mountains region. Ecol. Evol. 9, 8399-8410 [96] Ye, C.-Y., Wu, D., Mao, L., et al., 2020. The genomes of the allohexaploid Echinochloa crus-galli and its progenitors provide insights into polyploidization-driven adaptation. Mol. Plant 13, 1298-1310 [97] Yu, H., Favre, A., Sui, X., et al., 2019. Mapping the genetic patterns of plants in the region of the Qinghai-Tibet Plateau:implications for conservation strategies. Divers. Distrib. 25, 310-324 [98] Zhang, D.C., Boufford, D.E., Ree, R.H., et al., 2009. The 29°N latitudinal line:an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nord. J. Bot. 27, 405-412 [99] Zhang, L., Wu, S., Chang, X., et al., 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant Cell Environ. 43, 2847-2856 [100] Zhang, Y., Qian, L., Spalink, D., et al., 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191 [101] Zhao, Y., Tzedakis, P.C., Li, Q., et al., 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 6, 1-12 [102] Zheng, Q.-J., Yu, C.-C., Xing, Y.-W., et al., 2021. A new Rorippa species (Brassicaceae), R. hengduanshanensis, from the hengduan mountains in China. Phytotaxa 480, 210-222 |
[1] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species [J]. Plant Diversity, 2025, 47(04): 620-632. |
[2] | Fangdong Geng (耿方东), Miaoqing Liu (刘苗青), Luzhen Wang (王璐珍), Xuedong Zhang (张雪栋), Jiayu Ma (马佳雨), Hang Ye (叶航), Keith Woeste, Peng Zhao (赵鹏). Genomic introgression underlies environmental adaptation in three species of Chinese wingnuts, Pterocarya [J]. Plant Diversity, 2025, 47(03): 365-381. |
[3] | Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P. Jaramillo-Correa, David S. Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M. Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel. Causes of heterozygosity excess: The case of Mexican populations of Populus tremuloides [J]. Plant Diversity, 2025, 47(03): 415-428. |
[4] | Miaomiao Shi, Ping Liang, Zhonglai Luo, Yu Zhang, Shiran Gu, Xiangping Wang, Xin Qian, Shuguang Jian, Kuaifei Xia, Shijin Li, Zhongtao Zhao, Tieyao Tu, Dianxiang Zhang. Genome compaction underlies the molecular adaptation of bay cedar (Suriana maritima) to the extreme habitat on the tropical coral islands [J]. Plant Diversity, 2025, 47(02): 337-340. |
[5] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[6] | Miao Liu, Tiancai Zhou, Quansheng Fu. Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally [J]. Plant Diversity, 2024, 46(06): 804-811. |
[7] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
[8] | Zhen Yang, Lisong Liang, Weibo Xiang, Lujun Wang, Qinghua Ma, Zhaoshan Wang. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis [J]. Plant Diversity, 2024, 46(03): 294-308. |
[9] | Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera. Siwalik plant megafossil diversity in the Eastern Himalayas:A review [J]. Plant Diversity, 2023, 45(03): 243-264. |
[10] | Hong Qian. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China [J]. Plant Diversity, 2023, 45(02): 169-176. |
[11] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems [J]. Plant Diversity, 2022, 44(03): 231-242. |
[12] | Li-Shen Qian, Hong-Hua Shi, Xiao-Kun Ou, Hang Sun. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China [J]. Plant Diversity, 2022, 44(01): 20-29. |
[13] | Ran Meng, Ying Meng, Yong-Ping Yang, Ze-Long Nie. Phylogeny and biogeography of Maianthemum (Asparagaceae: Nolinoideae) revisited with emphasis on its divergence pattern in SW China [J]. Plant Diversity, 2021, 43(02): 93-101. |
[14] | Ya-Ping Chen, Cun-Zhong Huang, Yue Zhao, Chun-Lei Xiang. Molecular and morphological evidence for a new species of Isodon (Lamiaceae) from southern China [J]. Plant Diversity, 2021, 43(01): 54-62. |
[15] | Yongqian Gao, Jinxuan Zheng, Xiangqun Lin, Fan Du. Distribution patterns of clonal plants in the subnival belt of the Hengduan Mountains, SW China [J]. Plant Diversity, 2020, 42(05): 386-392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||