Plant Diversity ›› 2025, Vol. 47 ›› Issue (03): 415-428.DOI: 10.1016/j.pld.2024.12.006
• Articles • Previous Articles Next Articles
Javier Hernández-Velascoa,b, José Ciro Hernández-Díazc, Sergio Leonel Simental-Rodrígueza, Juan P. Jaramillo-Corread, David S. Gernandte, José Jesús Vargas-Hernándezf, Ilga Porthg, Roos Goesseng, M. Socorro González-Elizondoh, Matthias Fladungi, Cuauhtémoc Sáenz-Romeroj, José Guadalupe Martínez-Ávalosk, Artemio Carrillo-Parrac, Eduardo Mendoza-Mayaa, Arnulfo Blanco-Garcíal, Christian Wehenkelc
Received:
2024-04-16
Revised:
2024-12-25
Online:
2025-05-21
Published:
2025-05-25
Contact:
Christian Wehenkel,E-mail:wehenkel@ujed.mx
Supported by:
Javier Hernández-Velascoa,b, José Ciro Hernández-Díazc, Sergio Leonel Simental-Rodrígueza, Juan P. Jaramillo-Corread, David S. Gernandte, José Jesús Vargas-Hernándezf, Ilga Porthg, Roos Goesseng, M. Socorro González-Elizondoh, Matthias Fladungi, Cuauhtémoc Sáenz-Romeroj, José Guadalupe Martínez-Ávalosk, Artemio Carrillo-Parrac, Eduardo Mendoza-Mayaa, Arnulfo Blanco-Garcíal, Christian Wehenkelc
通讯作者:
Christian Wehenkel,E-mail:wehenkel@ujed.mx
基金资助:
Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P. Jaramillo-Correa, David S. Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M. Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel. Causes of heterozygosity excess: The case of Mexican populations of Populus tremuloides[J]. Plant Diversity, 2025, 47(03): 415-428.
Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P. Jaramillo-Correa, David S. Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M. Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel. Causes of heterozygosity excess: The case of Mexican populations of Populus tremuloides[J]. Plant Diversity, 2025, 47(03): 415-428.
Agapow, P.M., Burt, A., 2001. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101- 102. https://doi.org/10.1046/j.1471-8278.2000.00014.x. Aitken, S.N., Whitlock, M.C., 2013. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367-388. https://doi.org/10.1146/annurev-ecolsys-110512-135747. Baker, A.S., 1967. Colorimetric determination of nitrate in soil and plant extracts with brucine. J. Agric. Food Chem. 15, 802-806. https://doi.org/10.1021/jf60153a004. Baldwin, S.J., Husband, B.C., 2013. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Mol. Ecol. 22, 1806-1819. https://doi.org/10.1111/mec.12217. Balloux, F., Amos, W., Coulson, T., 2004. Does heterozygosity estimate inbreeding in real populations? Mol. Ecol. 13, 3021-3031. https://doi.org/10.1111/j.1365-294X.2004.02318.x. Barbosa, A.M., 2015. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 6, 853-858. https://doi.org/https://doi.org/10.1111/2041-210X.12372. Barnes, B. V, 1966. The clonal growth habit of American aspens. Ecology 47, 439-447. https://doi.org/https://doi.org/10.2307/1932983. Benson, M.K., Einspahr, D.W., 1967. Early growth of diploid, triploid and triploid hybrid aspen. For. Sci. 13, 150-155. https://doi.org/10.1093/forestscience/13.2.150. Blonder, B., Graae, B.J., Greer, B., et al., 2020. Remote sensing of ploidy level in quaking aspen (Populus tremuloides Michx.). J. Ecol. 108, 175-188. https://doi.org/https://doi.org/10.1111/1365-2745.13296. Blonder, B., Ray, C.A., Walton, J.A., et al., 2021. Cytotype and genotype predict mortality and recruitment in Colorado quaking aspen (Populus tremuloides). Ecol. Appl. 31, e02438. https://doi.org/https://doi.org/10.1002/eap.2438. Blonder, B., Brodrick, P.G., Walton, J.A., 2022. Remote sensing of cytotype and its consequences for canopy damage in quaking aspen. Global Change Biol. 28, 2491-2504. https://doi.org/https://doi.org/10.1111/gcb.16064. Brandt, A., Van, P.T., Bluhm, C., et al., 2021. Haplotype divergence supports long-term asexuality in the oribatid mite Oppiella nova. Proc. Natl. Acad. Sci. U.S.A. 118(38), e2101485118. https://doi.org/10.1073/pnas.2101485118. Callahan, C.M., Rowe, C.A., Ryel, R.J., et al., 2013. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides). J. Biogeogr. 40, 1780-1791. https://doi.org/https://doi.org/10.1111/jbi.12115. Castellanos, J.Z., Uvalle-Bueno, J.X., Aguilar-Santelises, A., 1999. Memoria del curso sobre interpretacion de analisis de suelos, aguas agricolas, plantas y ECP. Mexico: Instituto para la Innovacion Tecnologica en la Agricultura 188. Catchen, J., Hohenlohe, P.A., Bassham, S., et al., 2013. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124-3140. https://doi.org/https://doi.org/10.1111/mec.12354. Caye K., Jumentier B., Lepeule J., et al., 2019. LFMM 2: Fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 36, 852-860. https://doi.org/10.1093/molbev/msz008. Cerna, L., Munzbergova, Z., 2015. Conditions in home and transplant soils have differential effects on the performance of diploid and allotetraploid Anthericum species. PLoS One 10, e0116992. https://doi.org/10.1371/journal.pone.0116992. Charlesworth, D., Charlesworth, B., 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Systemat. 18, 237-268. https://doi.org/https://doi.org/10.1146/annurev.es.18.110187.001321. Cheliak, W.M., Dancik, B.P., 1982. Genic diversity of natural populations of a clone- forming tree Populus tremuloides. Can. J. Genet. Cytol. 24, 611-616. https://doi.org/10.1139/g82-065. Chinone, A., Nodono, H., Matsumoto, M., 2014. Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex. Chromosoma 123, 265-272. https://doi.org/10.1007/s00412-013-0449-2. Cingolani, P., Platts, A., Wang, L. L., et al., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92. https://doi.org/10.4161/fly.19695. Cole, C.T., 2005. Allelic and population variation of microsatellite loci in aspen (Populus tremuloides). New Phytol. 167, 155-164. https://doi.org/https://doi.org/10.1111/j.1469-8137.2005.01423.x. Crouch, C.D., Rogers, P.C., Moore, M.M., et al., 2023. Building ecosystem resilience and adaptive capacity: a systematic review of aspen ecology and management in the Southwest. For. Sci. 69, 334-354. https://doi.org/10.1093/forsci/fxad004. Crow, J., Kimura, M., 1970. An Introduction to Population Genetics Theory, Blackburn Press, Caldwell. Blackburn Press, Caldwell. pp. 656. https://doi.org/10.2307/1529706. Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330. Delmotte, F., Leterme, N., Gauthier, J.P., et al., 2002. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol. Ecol. 11, 711-723. https://doi.org/10.1046/j.1365-294X.2002.01478.x. Delph, L. F., Kelly, J. K., 2014. On the importance of balancing selection in plants. New Phytol. 201, 45-56. https://doi.org/10.1111/nph.12441. Ding, C., Schreiber, S.G., Roberts, D.R., et al., 2017. Post-glacial biogeography of trembling aspen inferred from habitat models and genetic variance in quantitative traits. Sci. Rep. 7, 4672. https://doi.org/10.1038/s41598-017-04871-7. Dixon, G.B., De Wald, L.E., 2015. Microsatellite survey reveals possible link between triploidy and mortality of quaking aspen in Kaibab National Forest, Arizona. Can. J. For. Res. 45, 1369-1375. https://doi.org/10.1139/cjfr-2014-0566. Dynesius, M., Jansson, R., 2000. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U.S.A. 97, 9115-9120. https://doi.org/10.1073/pnas.97.16.9115. Erichsen, E.O., Wolff, K., Hansen, O.K., 2019. Genetic and clonal structures of the tree species Tilia cordata mill. in remnants of ancient forests in Denmark. Popul. Ecol. 61, 243-255. https://doi.org/10.1002/1438-390X.12002. Excoffier, L., Ray, N., 2008. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol. Evol. 23, 347-351. https://doi.org/10.1016/j.tree.2008.04.004. Falconer, D.S., Mackay, T. F.C., 1996. Introduction to Quantitative Genetics. (4th ed.). Prentice Hall: Harlow, UK. pp. 464. Frankel, O.H., Soule, M.E., 1981. Conservation and evolution. Cambridge University Press. pp. 327. Frankham, R., 1995a. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95-107. https://doi.org/DOI: 10.1017/S0016672300034455. Frankham, R., 1995b. Conservation genetics. Annu. Rev. Genet. 29, 305-327. https://doi.org/10.1146/annurev.ge.29.120195.001513. Frichot, E., Francois, O., 2015. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925-929. https://doi.org/10.1111/2041-210X.12382. Gain C, Francois O., 2021. LEA 3: Factor models in population genetics and ecological genomics with R. Mol. Ecol. Resour. 21, 2738-2748. https://doi.org/10.1111/1755-0998.13366. Goessen, R., Isabel, N., Wehenkel, C., et al., 2022. Coping with environmental constraints: geographically divergent adaptive evolution and germination plasticity in the transcontinental Populus tremuloides. Plants People Planet 4, 638-654. https://doi.org/https://doi.org/10.1002/ppp3.10297. Gompert, Z., Mock, K.E., 2017. Detection of individual ploidy levels with genotyping-by-sequencing (GBS) analysis. Mol. Ecol. Resour. 17, 1156-1167. https://doi.org/https://doi.org/10.1111/1755-0998.12657. Goudet, J., Jombart, T., 2022. hierfstat: Estimation and Tests of Hierarchical F-Statistics. R package version 0.5-11. R Core Team. https://CRAN.R-project.org/package=hierfstat. Greer, B.T., Still, C., Cullinan, G.L., et al., 2018. Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.). Tree Physiol. 38, 630-640. https://doi.org/10.1093/treephys/tpx120. Gregorius, H.-R., 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci. 41, 253-271. https://doi.org/10.1016/0025-5564(78)90040-8. Haigh, J., Smith, J.M., 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23-35. https://doi.org/10.1017/S0016672300014634. Hartfield, M., 2016. On the origin of asexual species by means of hybridization and drift. Mol. Ecol. 25, 3264-3265. https://doi.org/10.1111/mec.13713. Herbert, V.F., 1992. Practicas de relaciones agua-suelo-planta-atmosfera. Chapingo, Texcoco, Mexico: Universidad Autonoma de Chapingo. pp. 169. Hutchinson, M.F., 1991. Continent-wide data assimilation using thin plate smoothing splines. Data assimilation systems. In Data assimilation systems; BMRC Research Report No.27; Jasper, J.D., Ed.; Bureau of Meteorology Research Centre: Melbourne, Australia, 1991; pp. 104-113. Jaccard, P., 1908. Nouvelles Recherches Sur la Distribution Florale. Bull. Soc. vaudoise sci. nat. 44, 223-270. https://doi.org/10.5169/seals-268384. Jackson, D.A., 1993. Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology 74, 2204-2214. https://doi.org/https://doi.org/10.2307/1939574. Jelinski, D.E., Cheliak, W.M., 1992. Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape. Am. J. Bot. 79, 728-736. https://doi.org/10.1002/j.1537-2197.1992.tb13647.x. Judson, O.P., Normark, B.B., 1996. Ancient asexual scandals. Trends Ecol. Evol. 11, 41-46. https://doi.org/https://doi.org/10.1016/0169-5347(96)81040-8. Kassambara, A., 2023. ggpubr: “ggplot2” based publication ready plots. R package version 0.6.0. https://rpkgs.datanovia.com/ggpubr/. Kawecki, T.J., Ebert, D., 2004. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225-1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x. Kemperman, J.A., Barnes, B. V., 1976. Clone size in American aspens. Canad. J. Bot. 54, 2603-2607. https://doi.org/10.1139/b76-280. Klarqvist, M.D.R., 2019. Tomahawk: Fast calculation of LD in large-scale cohorts. https://github.com/mklarqvist/tomahawk. Klopfstein, S., Currat, M., Excoffier, L., 2006. The fate of mutations surfing on the wave of a range expansion. Mol. Biol. Evol. 23, 482-490. https://doi.org/10.1093/molbev/msj057. Kremer, A., Ronce, O., Robledo-Arnuncio, J.J., et al., 2012. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378-392. https://doi.org/10.1111/j.1461-0248.2012.01746.x. Krieger, M.J.B., Keller, L., 1998. Brief communication. Estimation of the proportion of triploids in populations with diploid and triploid individuals. J. Hered. 89, 275-279. https://doi.org/10.1093/jhered/89.3.275. Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441. Latutrie, M., Bergeron, Y., Tremblay, F., 2016. Fine-scale assessment of genetic diversity of trembling aspen in northwestern North America. BMC Evol. Biol. 16, 231. https://doi.org/10.1186/s12862-016-0810-1. Leimu, R., Mutikainen, P., Koricheva, J., et al., 2006. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94, 942-952. https://doi.org/10.1111/j.1365-2745.2006.01150.x. Leon, A.R., Aguilar, A.S., 1987. Materia organica. Analisis quimico para evaluar la fertilidad del suelo. SMCS. Publicacion especial 1, 217. Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324. Little, E.L., Jr. 1971. Atlas of United States trees. Conifers and important hardwoods. Misc. Pub. 1146. Washington, DC: U.S. Department of Agriculture, Forest Service. pp. 400. Vol. 1. Luu, K., Bazin, E., Blum, M.G.B., 2017. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67-77. https://doi.org/https://doi.org/10.1111/1755-0998.12592. Mable, B.K., 2004. “Why polyploidy is rarer in animals than in plants”: Myths and mechanisms. Biol. J. Linn. Soc. 82, 453-466. https://doi.org/10.1111/j.1095-8312.2004.00332.x. Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10-12. https://doi.org/10.14806/ej.17.1.200. Mitton, J.B., 1989. Physiological and demographic variation associated with allozyme variation, in: Soltis, D.E., Soltis, P.S., Dudley, T.R. (Eds.), Isozymes in plant biology. Springer Netherlands, Dordrecht, pp. 127-145. https://doi.org/10.1007/978-94-009-1840-5_7. Mitton, J.B., Grant, M.C., 1996. Genetic variation and the natural history of quaking aspen. Bioscience 46, 25-31. https://doi.org/10.2307/1312652. Mock, K.E., Rowe, C.A., Hooten, M.B., et al., 2008. Clonal dynamics in western North American aspen (Populus tremuloides). Mol. Ecol. 17, 4827-4844. https://doi.org/10.1111/j.1365-294X.2008.03963.x. Mock, K.E., Callahan, C.M., Islam-Faridi, M.N., et al., 2012. Widespread triploidy in western North American aspen (Populus tremuloides). PLoS One 7, e48406. https://doi.org/10.1371/journal.pone.0048406. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513-522. https://doi.org/https://doi.org/10.1029/WR012i003p00513. Neale, D.B., Kremer, A., 2011. Forest tree genomics: Growing resources and applications. Nat. Rev. Genet. 12, 111-122. https://doi.org/10.1038/nrg2931. Newman, D., Pilson, D., 1997. Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51, 354-362. https://doi.org/https://doi.org/10.1111/j.1558-5646.1997.tb02422.x. Noss, R.F., 2001. Beyond kyoto: Forest management in a time of rapid climate change. Conserv. Biol. 15, 578-590. https://doi.org/10.1046/j.1523-1739.2001.015003578.x. Ohta, T., 1982a. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 79, 1940-1944. https://doi.org/10.1073/pnas.79.6.1940. Ohta, T., 1982b. Linkage disequilibrium with the island model. Genetics 101, 139-155. https://doi.org/10.1093/genetics/101.1.139. Olsen, S.R., Cole, C. V, Watanabe, F.S., et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. of Agriculture, Washington, D.C. Ouborg, N.J., Pertoldi, C., Loeschcke, V., et al., 2010. Conservation genetics in transition to conservation genomics. Trends Genet. 26, 177-187. https://doi.org/https://doi.org/10.1016/j.tig.2010.01.001. Pavlidis, P., Alachiotis, N., 2017. A survey of methods and tools to detect recent and strong positive selection. J. Biol. Res.-Thessaloniki 24, 7. https://doi.org/10.1186/s40709-017-0064-0. Peischl, S., Kirkpatrick, M., 2012. Establishment of new mutations in changing environments. Genetics 191, 895-906. https://doi.org/10.1534/genetics.112.140756. Pellino, M., Hojsgaard, D., Schmutzer, T., et al., 2013. Asexual genome evolution in the apomictic Ranunculus auricomus complex: Examining the effects of hybridization and mutation accumulation. Mol. Ecol. 22, 5908-5921. https://doi.org/10.1111/mec.12533. Perala, D.A., 1990. Populus tremuloides Michx. Quaking Aspen. In Silvics of North America: hardwoods. Eds. Burns R., Honkala B. (Washington DC, USA: US Department of Agriculture, Forest Service). pp. 555-569. Available from http://dendro.cnre.vt.edu/DENDROLOGY/USDAFSSilvics/160.pdf. Pohlert, T., 2014. The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://CRAN.R-project.org/package=PMCMR. Poland, J.A., Brown, P.J., Sorrells, M.E., et al., 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253. https://doi.org/10.1371/journal.pone.0032253. Quinones-Perez, C.Z., Simental-Rodriguez, S.L., Saenz-Romero, C., et al., 2014. Spatial genetic structure in the very rare and species-rich Picea chihuahuana tree community (Mexico). Silvae Genet. 63, 149-158. https://doi.org/10.1515/sg-2014-0020. R Core Team, 2022. R: a language and environment for statistical computing, v.4.2.1. Vienna, Austria: R foundation for Statistical Computing. URL http://www.r-project.org. R package version 3. Reed, D.H., Frankham, R., 2003. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230-237. https://doi.org/10.1046/j.1523-1739.2003.01236.x. Rehfeldt, G.E., 2006. A spline model of climate for the western United States. Gen. Tech. Rep. RMRS-GTR-165. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 21 pp. 165. Ridout, M.S., 2000. Brief communication. Improved estimation of the proportion of triploids in populations with diploid and triploid individuals. J. Hered. 91, 57-60. https://doi.org/10.1093/jhered/91.1.57. Rochette, N.C., Rivera-Colon, A.G., Catchen, J.M., 2019. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737-4754. https://doi.org/https://doi.org/10.1111/mec.15253. Rogers, P.C., Pinno, B.D., Sebesta, J., et al., 2020. A global view of aspen: Conservation science for widespread keystone systems. Glob. Ecol. Conserv. 21, e00828. https://doi.org/10.1016/j.gecco.2019.e00828. Rowe, C., 2019. vcf2Jaccard. https://github.com/carol-rowe666/vcf2Jaccard. Sachs, L., 2013. Angewandte Statistik: Anwendung statistischer Methoden. Springer-Verlag. pp. 553. Saenz-Romero, C., Rehfeldt, G.E., Crookston, N.L., et al., 2010. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim. Change 102, 595-623. https://doi.org/10.1007/s10584-009-9753-5. Savolainen, O., Pyhajarvi, T., Knurr, T., 2007. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38, 595-619. https://doi.org/10.1146/annurev.ecolsys.38.091206.095646. Schultz, S.T., Willis, J.H., 1995. Individual variation in inbreeding depression: The roles of inbreeding history and mutation. Genetics 141, 1209-1223. https://doi.org/10.1093/genetics/141.3.1209. Simental-Rodriguez, S.L., Quinones-Perez, C.Z., Moya, D., et al., 2014. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico. PLoS One 9, e111623. https://doi.org/https://doi.org/10.1371/journal.pone.0111623. Sjodin, A., Street, N.R., Sandberg, G., et al., 2009. The Populus genome integrative explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol. 182, 1013-1025. https://doi.org/https://doi.org/10.1111/j.1469-8137.2009.02807.x. Slatkin, M., 2008. Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477-485. https://doi.org/10.1038/nrg2361. Soltis, P.S., Soltis, D.E., 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051-7057. https://doi.org/10.1073/pnas.97.13.7051. Stoeckel, S., Masson, J.P., 2014. The exact distributions of FIS under partial asexuality in small finite populations with mutation. PLoS One 9, e85228-. https://doi.org/https://doi.org/10.1371/journal.pone.0085228. Stoeckel, S., Grange, J., Fernandez-Manjarres, J.F., et al., 2006. Heterozygote excess in a self-incompatible and partially clonal forest tree species -Prunus avium L. Mol. Ecol. 15, 2109-2118. https://doi.org/10.1111/j.1365-294X.2006.02926.x. Strobl, C., Hothorn, T., Zeileis, A., 2009. Party on! A new, conditional variable importance measure for random forests available in the party package. R. J. 1, 14-17. https://doi.org/10.32614/RJ-2009-013. Sundell, D., Mannapperuma, C., Netotea, S., et al., 2015. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 208, 1149-1156. https://doi.org/https://doi.org/10.1111/nph.13557. Swift, K., Ran, S., 2012. Successional responses to natural disturbance, forest management and climate change in British Columbia forests. J. Environ. Manage. 13, 1-23. https://doi.org/10.22230/jem.2012v13n1a171. Thissen, D., Steinberg, L., Kuang, D., 2002. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 27, 77-83. https://doi.org/10.3102/10769986027001077. Thornhill, N.W., 1993. The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press. Chicago, IL. Tossi, V.E., Martinez Tosar, L.J., Laino, L.E., et al., 2022. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Front. Plant. Sci. 13, 869423. https://doi.org/10.3389/fpls.2022.869423. Van de Peer, Y., Mizrachi, E., Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424. https://doi.org/10.1038/nrg.2017.26. Van de Peer, Y., Ashman, T.-L., Soltis, P.S., et al., 2021. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33, 11-26. https://doi.org/10.1093/plcell/koaa015. Vazquez-Alarcon, A., Aguilar-Noh, A., 2020. Practicas del Curso Quimica de Suelos. Departamento de suelos. Universidad autonoma de Chapingo. Mexico. pp. 125. Venables, W.N., Ripley, B.D., 1999. Tree-based Methods BT - Modern Applied Statistics with S-PLUS, in: Venables, W.N., Ripley, B.D. (Eds.), Springer New York, NY, pp. 303-327. https://doi.org/10.1007/978-1-4757-3121-7_10. Wang, J., Street, N.R., Scofield, D.G., et al., 2016. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. Genetics 202, 1185-1200. https://doi.org/10.1534/genetics.115.183152. Wang, J., Ding, J., Tan, B., et al., 2018. A major locus controls local adaptation and adaptive life history variation in a perennial plant. Genome Biol. 19, 72. https://doi.org/10.1186/s13059-018-1444-y. Wehenkel, C., Quiñones-Pérez, C.Z., Simental-Rodríguez, S.L., et al., 2014. Proportion of vegetation reproduction in Mexican Populus tremuloides Michx. populations on the Sierra Madre Occidental. In: 2014 IUFRO Forest Tree Breeding Conference Prague, Czech Republic, 25-29 August 2014. https://doi.org/10.13140/2.1.2295.5202. Weiss-Schneeweiss, H., Emadzade, K., Jang, T.S., et al., 2013. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 140, 137-150. https://doi.org/10.1159/000351727. Welch, D.M., Meselson, M., 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211-1215. https://doi.org/10.1126/science.288.5469.1211. Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://ggplot2.tidyverse.org. Wiehle, M., Vornam, B., Wesche, K., et al., 2016. Population structure and genetic diversity of Populus laurifolia in fragmented riparian gallery forests of the Mongolian Altai Mountains. Flora 224, 112-122. https://doi.org/10.1016/j.flora.2016.07.004. Williams, C.K., Engelhardt, A., Cooper, T., et al., 2015. Package ‘caret’. Available online:https://github.com/topepo/caret/. Worrall, J.J., Rehfeldt, G.E., Hamann, A., et al., 2013. Recent declines of Populus tremuloides in North America linked to climate. For. Ecol. Manage. 299, 35-51. https://doi.org/10.1016/j.foreco.2012.12.033. Wright, S., 1940. Breeding structure of populations in relation to speciation. Am. Nat. 74, 232-248. https://doi.org/10.1086/280891. Wright, S., 1969. Evolution and the genetics of populations: Vol. 2. The theory of gene frequencies. pp. 511. Wright, S., 1977. Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. pp. 613. Wu, Q., Zang, F., Ma, Y., et al., 2020. Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers. Glob. Ecol. Conserv. 24, e01329. https://doi.org/10.1016/j.gecco.2020.e01329. Zhou, A., Zong, D., Gan, P., et al., 2020. Genetic diversity and population structure of Populus yunnanensis revealed by SSR markers. Pak. J. Bot. 52, 2147-2155. https://doi.org/10.30848/PJB2020-6(21). Zhu, Z., Kang, X., Zhang, Z., et al., 1998. Studies on selection of natural triploids of Populus tomentosa. Sci. Silvae Sin. 34, 22-31. |
[1] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species [J]. Plant Diversity, 2025, 47(04): 620-632. |
[2] | Fangdong Geng (耿方东), Miaoqing Liu (刘苗青), Luzhen Wang (王璐珍), Xuedong Zhang (张雪栋), Jiayu Ma (马佳雨), Hang Ye (叶航), Keith Woeste, Peng Zhao (赵鹏). Genomic introgression underlies environmental adaptation in three species of Chinese wingnuts, Pterocarya [J]. Plant Diversity, 2025, 47(03): 365-381. |
[3] | Miaomiao Shi, Ping Liang, Zhonglai Luo, Yu Zhang, Shiran Gu, Xiangping Wang, Xin Qian, Shuguang Jian, Kuaifei Xia, Shijin Li, Zhongtao Zhao, Tieyao Tu, Dianxiang Zhang. Genome compaction underlies the molecular adaptation of bay cedar (Suriana maritima) to the extreme habitat on the tropical coral islands [J]. Plant Diversity, 2025, 47(02): 337-340. |
[4] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[5] | Miao Liu, Tiancai Zhou, Quansheng Fu. Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally [J]. Plant Diversity, 2024, 46(06): 804-811. |
[6] | Zhen Yang, Lisong Liang, Weibo Xiang, Lujun Wang, Qinghua Ma, Zhaoshan Wang. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis [J]. Plant Diversity, 2024, 46(03): 294-308. |
[7] | Hong Qian. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China [J]. Plant Diversity, 2023, 45(02): 169-176. |
[8] | Ting-Shen Han, Zheng-Yan Hu, Zhi-Qiang Du, Quan-Jing Zheng, Jia Liu, Thomas Mitchell-Olds, Yao-Wu Xing. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Plant Diversity, 2022, 44(05): 455-467. |
[9] | Ji-Hua Wang, Yan-Fei Cai, Shi-Feng Li, Shi-Bao Zhang. Differences in leaf physiological and morphological traits between Camellia japonica and Camellia reticulata [J]. Plant Diversity, 2020, 42(03): 181-188. |
[10] | Yujin Li, Qingqing Ye, De He, Huixian Bai, Jianfan Wen. The ubiquity and coexistence of two FBPases in chloroplasts of photosynthetic eukaryotes and its evolutionary and functional implications [J]. Plant Diversity, 2020, 42(02): 120-125. |
[11] | Aysajan Abdusalam, Qingjun Li. Morphological plasticity and adaptation level of distylous Primula nivalis in a heterogeneous alpine environment [J]. Plant Diversity, 2018, 40(06): 284-291. |
[12] | Xiong Li,§, Yunqiang Yang,§, Shihai Yang,§, Xudong Sun, Xin Yin, . Comparative proteomics analyses of intraspecific differences in the response of Stipa purpurea to drought [J]. Plant Diversity, 2016, 38(02): 124-145. |
[13] | LI Xiong-, YANG Shi-Hai-, YANG Yun-Qiang-, YIN Xin-, SUN Xu-Dong-, YANG Yong-Ping. Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought [J]. Plant Diversity, 2015, 37(4): 439-452. |
[14] | ZHANG Shi-Bao-, ZHOU Zhe-Kun-, XIU Kun. Effects of Altitude on Photosynthetic Gas Exchange and the Associated Leaf Trait in an Alpine Oak, Quercus guyavifolia (Fagaceae) [J]. Plant Diversity, 2011, 33(2): 214-224. |
[15] | XIAO YueE, TIAN Qi, ZHOU XiangYu, CHEN XiaoYa, HU YongHong. Reproductive Ecology of Iris ensata (Iridaceae) [J]. Plant Diversity, 2010, 32(02): 93-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||