Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 169-176.DOI: 10.1016/j.pld.2022.12.005
• Articles • Previous Articles Next Articles
Hong Qiana,b
Received:
2022-09-17
Revised:
2022-11-15
Online:
2023-06-13
Published:
2023-03-25
Contact:
Hong Qian,E-mail:hong.qian@illinoisstatemuseum.org
Hong Qiana,b
通讯作者:
Hong Qian,E-mail:hong.qian@illinoisstatemuseum.org
Hong Qian. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China[J]. Plant Diversity, 2023, 45(02): 169-176.
Hong Qian. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China[J]. Plant Diversity, 2023, 45(02): 169-176.
[1] Ackerly, D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. U.S.A. 106, 19699-19706. [2] Blackburn, T.M., Pysek, P., Bacher, S., et al., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333-339. [3] Cadotte, M.W., Campbell, S.E., Li, S.P., et al., 2018. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69, 661-684. [4] Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. [5] Divisek, J., Chytry, M., Beckage, B., et al., 2018. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commu. 9, 4631. [6] Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555. [7] Essl, F., Dawson, W., Kreft, H., et al., 2019. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051. [8] Fristoe, T.S., Milan, C., Dawson, W., et al., 2021. Dimensions of invasiveness: links between abundance, geographic range size and habitat breadth in Europe’s alien and native floras. Proc. Natl. Acad. Sci. U.S.A. 118, e2021173118. [9] Gallien, L., Thornhill, A.H., Zurell, D., et al., 2019. Global predictors of alien plant establishment success: combining niche and trait proxies. Proc. R. Soc. B-Biol. Sci. 286, 20182477. [10] Hao, Q., Ma, J.-S. Invasive alien plants in China: An update. Plant Divers. https://doi.org/10.1016/j.pld.2022.11.004. [11] Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., et al., (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett. 14, 741-748. [12] Jin, Y., Qian, H., 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [13] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [14] Krishna, M., Winternitz, J., Garkoti, S.C., et al., 2021. Functional leaf traits indicate phylogenetic signals in forests across an elevational gradient in the central Himalaya. J. Plant Res. 134, 753-764. [15] Lambdon, P.W., 2008. Is invasiveness a legacy of evolution? Phylogenetic patterns in the alien flora of Mediterranean islands. J. Ecol. 96, 46-57. [16] Lambertini, M., Leape, J., Marton-Lefevre, J., et al., 2011. Invasives: a major conservation threat. Science 333, 404-405. [17] Lin, Q., Xiao, C., Ma, J., 2022. A dataset on catalogue of alien plants in China. Biodivers. Sci. 30, 22127. [18] Lososova, Z., de Bello, F., Chytry, M., et al., 2015. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786-794. [19] Lu, L.-M., Mao, L.-F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [20] Mack, R.N., Simberloff, D., Lonsdale, W.M., et al., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689-710. [21] Miller, J.T., Hui, C., Thornhill, A.H., et al., 2017. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both? AoB Plants 9, plw80. [22] Omer, A., Fristoe, T., Yang, Q., et al., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. [23] Park, D.S., Feng, X., Maitner, B.S., et al., 2020. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl. Acad. Sci. U.S.A. 117, 10904-10910. [24] Pysek, P., Richardson, D.M., Rejmanek, M., et al., 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53, 131-143. [25] Pysek, P., Jaroik, V.c., Pergl, J., et al., 2009. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891-903. [26] Qian, H., 2007. Relationships between plant and animal species richness at a regional scale in China. Conserv. Biol. 21, 937-944. [27] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [28] Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. [29] Qian, H., Sandel, B. 2022. Darwin’s preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Glob. Ecol. Biogeogr. 31, 531-545. [30] Qian, H., Rejmanek, M., Qian, S., 2022a. Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Divers. Distrib. 28, 2084-2093. [31] Qian, H., Qian, S., Sandel, B., 2022b. Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Glob. Ecol. Biogeogr. 31, 1864-1876. [32] Richardson, D.M., Pysek, P., 2012. Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol. 196, 383-396. [33] Richardson, D.M., Pysek, P., Rejmanek, M., et al., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93-107. [34] Sandel, B., Tsirogiannis, C., 2016. Species introductions and the phylogenetic and functional structure of California's grasses. Ecology 97, 472-483. [35] Simberloff, D., Martin, J.L., Genovesi, P., et al., 2013. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58-66. [36] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [37] Thuiller, W., Gallien, L., Boulangeat, I., et al., 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461-475. [38] Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. [39] van Kleunen, M., Dawson, W., Essl, F., et al., 2015. Global exchange and accumulation of non-native plants. Nature 525, 100-103. [40] Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145-155. [41] Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475-505. [42] Williamson, M., 2006. Explaining and predicting the success of invading species at different stages of invasion. Biol. Invasions 8, 1561-1568. [43] Wu, C.-Y., Raven, P.H., Hong, D.-Y., eds. 1994-2013. Flora of China, vols. 2-25, Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. [44] Xu, M., Li, S.-P., Dick, J.T.A., et al., 2022. Exotic fishes that are phylogenetically close but functionally distant to native fishes are more likely to establish. Glob. Change Biol. 28, 5683-5694. [45] Zhang, A., Hu, X., Yao, S., et al., 2021. Alien, naturalized and invasive plants in China. Plants 10, 2241. [46] Zhang, J., Qian, H., 2023. U.Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45 [47] Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., et al., 2011. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250. |
[1] | Yuxuan Jiang, Fuli Wu, Xiaomin Fang, Haitao Wang, Yulong Xie, Cuirong Yu. Effective palynological diversity indices for reconstructing angiosperm diversity in China [J]. Plant Diversity, 2025, 47(02): 244-254. |
[2] | Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants [J]. Plant Diversity, 2025, 47(01): 13-20. |
[3] | Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world [J]. Plant Diversity, 2024, 46(03): 283-293. |
[4] | Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian. Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera [J]. Plant Diversity, 2024, 46(02): 149-157. |
[5] | Hong Qian, Shenhua Qian. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world [J]. Plant Diversity, 2023, 45(05): 491-500. |
[6] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[7] | Hong Qian. Intercontinental comparison of phylogenetic relatedness in introduced plants at the transition from naturalization to invasion: A case study on the floras of South Africa and China [J]. Plant Diversity, 2023, 45(04): 363-368. |
[8] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[9] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[10] | Yun-Yun He, Kwansupa Srisombut, Ding-Liang Xing, Nanthan G. Swenson, Mengesha Asefa, Min Cao, Xiao-Yang Song, Han-Dong Wen, Jie Yang. Ontogenetic trait variation and metacommunity effects influence species relative abundances during tree community assembly [J]. Plant Diversity, 2022, 44(04): 360-368. |
[11] | Qiao-Ming Li, Chao-Nan Cai, Wu-Mei Xu, Min Cao, Li-Qing Sha, Lu-Xiang Lin, Tian-Hua He. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly [J]. Plant Diversity, 2022, 44(03): 271-278. |
[12] | Jian-Fei Ye, Yun Liu, Zhi-Duan Chen. Dramatic impact of metric choice on biogeographical regionalization [J]. Plant Diversity, 2020, 42(02): 67-73. |
[13] | Yahuang Luo, Jie Liu, Shaolin Tan, Marc W. Cadotte, Kun Xu, Lianming Gao, Dezhu Li. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China [J]. Plant Diversity, 2016, 38(06): 303-311. |
[14] | TANG YanCheng,LU AnMing,CHEN ZhiDuan. A Brief Introduction to Anthophyte Concept and Discussion on Its Name [J]. Plant Diversity, 2004, 26(01): 1-3. |
[15] | TANG YanCheng,LU AnMing. A Comparison of Family Circumscription between FRPS and FGAC [J]. Plant Diversity, 2003, 25(06): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||