应用天然产物 ›› 2025, Vol. 15 ›› Issue (1): 10-10.DOI: 10.1007/s13659-024-00490-8
• SHORT COMMUNICATION • 上一篇
Ahmed H. Elbanna1,2, Xinhui Kou1, Dilip V. Prajapati1, Surasree Rakshit1, Rebecca A. Butcher1
收稿日期:
2024-08-29
接受日期:
2024-12-16
出版日期:
2025-02-24
发布日期:
2025-02-15
通讯作者:
Rebecca A. BUTCHER,E-mail:butcher@chem.ufl.edu
基金资助:
Ahmed H. Elbanna1,2, Xinhui Kou1, Dilip V. Prajapati1, Surasree Rakshit1, Rebecca A. Butcher1
Received:
2024-08-29
Accepted:
2024-12-16
Online:
2025-02-24
Published:
2025-02-15
Contact:
Rebecca A. BUTCHER,E-mail:butcher@chem.ufl.edu
Supported by:
摘要: The euglenatides are a family of hybrid polyketide-nonribosomal peptides produced by the unicellular algae Euglena gracilis. These compounds have antiproliferative activity against fungal pathogens and mammalian cancer cell lines. Analysis of E. gracilis extracts revealed that the algae produce not only the euglenatides, but also a corresponding family of analogs that have the same molecular weights as the euglenatides, but are lacking the characteristic triene chromophore. In comparison to the euglenatides, the activity of these analogs is greatly reduced in a mammalian cytotoxicity assay, indicating that the triene is critical to the biological activity of the euglenatides.
Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis[J]. 应用天然产物, 2025, 15(1): 10-10.
Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis[J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10.
[1] Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and diversity of assembly-line polyketide synthases. Chem Rev. 2019;119:12524–47. https://doi.org/10.1021/acs.chemrev.9b00525. [2] Miyanaga A, Kudo F, Eguchi T. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep. 2018;35:1185–209. https://doi.org/10.1039/c8np00022k. [3] Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC. Euglena central metabolic pathways and their subcellular locations. Metabolites. 2019;9:115. https://doi.org/10.3390/metabo9060115. [4] Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novak Vanclova AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. https://doi.org/10.1186/s12915-019-0626-8. [5] O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst. 2015;11:2808–20. https://doi.org/10.1039/c5mb00319a. [6] Aldholmi M, Ahmad R, Carretero-Molina D, Perez-Victoria I, Martin J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, et al. Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angew Chem Int Ed Engl. 2022;61: e202203175. https://doi.org/10.1002/anie.202203175. [7] Shou Q, Feng L, Long Y, Han J, Nunnery JK, Powell DH, Butcher RA. A hybrid polyketide-nonribosomal peptide in nematodes that promotes larval survival. Nat Chem Biol. 2016;12:770–2. https://doi.org/10.1038/nchembio.2144. [8] Butcher RA. Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol. 2017;13:577–86. https://doi.org/10.1038/nchembio.2356. [9] Feng L, Gordon MT, Liu Y, Basso KB, Butcher RA. Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun. 2021;600:472–7. https://doi.org/10.1038/s41586-021-03767-x. [10] Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. https://doi.org/10.1038/nbt.3597. [11] Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954–91. https://doi.org/10.1038/s41596-020-0317-5. [12] Willis RH, de Vries DJ. BRS1, a C30 bis-amino, bis-hydroxy polyunsaturated lipid from an Australian calcareous sponge that inhibits protein kinase C. Toxicon. 1997;35:1125–9. https://doi.org/10.1016/s0041-0101(96)00218-8. [13] Won TH, You M, Lee SH, Rho BJ, Oh DC, Oh KB, Shin J. Amino alcohols from the ascidian Pseudodistoma sp. Mar Drugs. 2014;12:3754–69. https://doi.org/10.3390/md12063754. [14] Ciavatta ML, Manzo E, Nuzzo G, Villani G, Varcamonti M, Gavagnin M. Crucigasterins A-E, antimicrobial amino alcohols from the Mediterranean colonial ascidian. Tetrahedron. 2010;66:7533–8. https://doi.org/10.1016/j.tet.2010.07.056. [15] Garrido L, Zubía E, Ortega MJ, Naranjo S, Salvá J. Obscuraminols, new unsaturated amino alcohols from the tunicate: structure and absolute configuration. Tetrahedron. 2001;57:4579–88. https://doi.org/10.1016/S0040-4020(01)00372-6. |
[1] | Wei-Ye Wu, Xun Wei, Qiong Liao, Yi-Fan Fu, Lei-Ming Wu, Lei Li, Shu-Qi Wu, Qing-Ren Lu, Fang-Yu Yuan, Dong Huang, Zhang-Hua Sun, Tao Yuan, Gui-Hua Tang. Structurally diverse polyketides and alkaloids produced by a plant-derived fungus Penicillium canescens L1[J]. 应用天然产物, 2025, 15(3): 22-22. |
[2] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023)[J]. 应用天然产物, 2025, 15(2): 13-13. |
[3] | María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract[J]. 应用天然产物, 2025, 15(1): 4-4. |
[4] | Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products[J]. 应用天然产物, 2024, 14(5): 37-37. |
[5] | Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2[J]. 应用天然产物, 2024, 14(5): 40-40. |
[6] | Yin-Ping Song, Nai-Yun Ji. Chemistry and biology of marine-derived Trichoderma metabolites[J]. 应用天然产物, 2024, 14(3): 14-14. |
[7] | Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease[J]. 应用天然产物, 2024, 14(2): 2-2. |
[8] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. 应用天然产物, 2024, 14(1): 7-7. |
[9] | Jing Fan, Pai Liu, Kuan Zhao, He-Ping Chen. Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus[J]. 应用天然产物, 2023, 13(6): 46-46. |
[10] | Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products[J]. 应用天然产物, 2023, 13(6): 47-47. |
[11] | Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. 应用天然产物, 2023, 13(5): 34-34. |
[12] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. 应用天然产物, 2023, 13(5): 35-35. |
[13] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. 应用天然产物, 2023, 13(5): 37-37. |
[14] | Ji-Kai Liu. Natural products in cosmetics[J]. 应用天然产物, 2022, 12(6): 40-40. |
[15] | Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. 应用天然产物, 2022, 12(5): 31-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||