[1] Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. 2017;8:1617. [2] Van Der Heijden MG, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11(3):296-310. [3] Franche C, Lindström K, Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil. 2009;321:35-59. [4] Vurukonda SSKP, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci. 2018;19(4):952. [5] Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microb Pathog. 2017;111:458-67. [6] Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25-41. [7] Takeuchi T, Sawada H, Tanaka F, Matsuda I. Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Evol Microbiol. 1996;46(2):476-9. [8] De Simeis D, Serra S. Actinomycetes: a never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics. 2021;10(5):483. [9] Van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev. 2017;41(3):392-416. [10] Strzelczyk E, Pokojska-Burdziej A. Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant Soil. 1984;81:185-94. [11] Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 2009;26(11):1362-84. [12] Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ. Actinomycete metabolome induction/suppression with N-acetylglucosamine. J Nat Prod. 2017;80(4):828-36. https://doi.org/10.1021/acs.jnatprod.6b00673. [13] Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs. 2014;12(5):3046-59. [14] Celmer WD, Solomons I. The structures of thiolutin and aureothricin, antibiotics containing a unique pyrrolinonodithiole nucleus. J Am Chem Soc. 1955;77(10):2861-5. [15] Celmer WD, Tanner FW Jr, Harfenist M, Lees T, Solomons I. Characterization of the antibiotic thiolutin and its relationship with aureothricin. J Am Chem Soc. 1952;74(24):6304-5. [16] Merrouche R, Yekkour A, Coppel Y, Bouras N, Zitouni A, Mathieu F, et al. Saccharothrix algeriensis NRRL B-24137, the first non-Streptomyces actinobacterium, produces holomycin after cystine feeding. Arch Microbiol. 2020;202(9):2509-16. [17] McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, et al. Biologically active metabolites from Xenorhabdus spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod. 1991;54(3):774-84. [18] Shiozawa H, Kagasaki T, Kinoshita T, Haruyama H, Domon H, Utsui Y, et al. Thiomarinol, a new hybrid antimicrobial antibiotic produced by a marine bacterium fermentation, isolation, structure, and antimicrobial activity. J Antibiot. 1993;46(12):1834-42. [19] Oliva B, O’Neill A, Wilson JM, O’Hanlon PJ, Chopra I. Antimicrobial properties and mode of action of the pyrrothine holomycin. Antimicrob Agents Chemother. 2001;45(2):532-9. [20] Nguyen LTT, Park AR, Van Le V, Hwang I, Kim J-C. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight. Appl Microbiol Biotechnol. 2024;108(1):49. https://doi.org/10.1007/s00253-023-12874-w. [21] Li B, Wever WJ, Walsh CT, Bowers AA. Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Nat Prod Rep. 2014;31(7):905-23. [22] Qiu C, Arora P, Malik I, Laperuta AJ, Pavlovic EM, Ugochukwu S, et al. Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Res. 2024;52(5):2546-64. https://doi.org/10.1093/nar/gkad1258. [23] Jiao H, Xu W, Hu Y, Tian R, Wang Z. Citric acid in rice root exudates enhanced the colonization and plant growth-promoting ability of Bacillus altitudinis LZP02. Microbiol Spectr. 2022;10(6):e01002-e1022. [24] Ribeiro M, Sousa CA, Simões M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J Adv Res. 2022;39:89-101. [25] Cheung J, Murphy Michael EP, Heinrichs DE. Discovery of an Iron-Regulated Citrate Synthase in Staphylococcus aureus. Chem Biol. 2012;19(12):1568-78. https://doi.org/10.1016/j.chembiol.2012.10.003. [26] Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio. 2013. https://doi.org/10.1128/mbio.00459-13. [27] Küberl A, Mengus-Kaya A, Polen T, Bott M. The iron deficiency response of Corynebacterium glutamicum and a link to thiamine biosynthesis. Appl Environ Microbiol. 2020;86(10):e00065-e120. [28] Vior NM, Olano C, García I, Méndez C, Salas JA. Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators. Microbiology (Reading). 2014;160(3):467-78. https://doi.org/10.1099/mic.0.075218-0. [29] Martinet L, Naômé A, Deflandre B, Maciejewska M, Tellatin D, Tenconi E, et al. A single biosynthetic gene cluster is responsible for the production of bagremycin antibiotics and ferroverdin iron chelators. MBio. 2019. https://doi.org/10.1128/mbio.01230-19. [30] Dayan FE, Cantrell CL, Duke SO. Natural products in crop protection. Bioorg Med Chem. 2009;17(12):4022-34. https://doi.org/10.1016/j.bmc.2009.01.046. [31] Lin Z, Falkinham JO III, Tawfik KA, Jeffs P, Bray B, Dubay G, et al. Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod. 2012;75(9):1518-23. https://doi.org/10.1021/np300108u. [32] https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. [33] Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020;70(1): e102. https://doi.org/10.1002/cpbi.102. [34] Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13(6): e1005595. https://doi.org/10.1371/journal.pcbi.1005595. [35] Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17(11):1103-10. https://doi.org/10.1038/s41592-020-00971-x. [36] George B, Ghais H, Ryan RW, Vijini M, Michael JR, Bhavya P, et al. Hybracter: enabling scalable, automated, complete and accurate bacterial genome assemblies. bioRxiv. 2024. https://doi.org/10.1101/2023.12.12.571215. [37] Bastien Chevreux JW, Andrea H, Katrina D. Sequence assembly and mapping with MIRA 5. 2018. https://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html. [38] Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11): e112963. https://doi.org/10.1371/journal.pone.0112963. [39] Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023;51(1):W46-50. https://doi.org/10.1093/nar/gkad344. [40] Alexander D, Zuberer D. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils. 1991;12:39-45. |