应用天然产物 ›› 2023, Vol. 13 ›› Issue (6): 46-46.DOI: 10.1007/s13659-023-00410-2
Jing Fan1, Pai Liu2, Kuan Zhao3, He-Ping Chen1
收稿日期:
2023-08-29
出版日期:
2023-12-24
发布日期:
2023-12-26
通讯作者:
Kuan Zhao,E-mail:1020160918@jxstnu.edu.cn;He-Ping Chen,E-mail:chenhp@mail.scuec.edu.cn
基金资助:
Jing Fan1, Pai Liu2, Kuan Zhao3, He-Ping Chen1
Received:
2023-08-29
Online:
2023-12-24
Published:
2023-12-26
Contact:
Kuan Zhao,E-mail:1020160918@jxstnu.edu.cn;He-Ping Chen,E-mail:chenhp@mail.scuec.edu.cn
Supported by:
摘要: Three previously undescribed compounds, cordycicadione (1), cordycicadin F (2), and 7-hydroxybassiatin (3), were isolated from the cultures of Cordyceps cicadae JXCH1, an entomopathogenic fungus. Their structures and relative configurations were elucidated primarily by NMR spectroscopic analysis. The absolute configurations of 1 and 2 were determined by ECD calculations. Single-crystal X-ray diffraction method was adopted to determine the absolute configuration of 3. Compound 2 is a polycyclic polyketide with an unusual enol ether moiety and a spiro ring. The compounds obtained in this study were subjected to screening their inhibition against the proliferation of the human lung cancer cell line A549 and the production of nitric oxide in murine macrophages RAW264.7.
Jing Fan, Pai Liu, Kuan Zhao, He-Ping Chen. Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus[J]. 应用天然产物, 2023, 13(6): 46-46.
Jing Fan, Pai Liu, Kuan Zhao, He-Ping Chen. Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus[J]. Natural Products and Bioprospecting, 2023, 13(6): 46-46.
[1] Chen B, Sun YL, Luo FF, Wang CS. Bioactive metabolites and potential mycotoxins produced by Cordyceps Fungi: a review of Safety. Toxins. 2020;12:410. [2] Nxumalo W, Elateeq AA, Sun YF. Can cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? - a review. J Ethnopharmacol. 2020;257:112879. [3] Li XY, Chen HP, Zhou L, Fan J, Awakawa T, Mori T, Ushimaru R, Abe I, Liu JK. Cordycicadins A-D, Antifeedant Polyketides from the Entomopathogenic Fungus Cordyceps Cicadae JXCH1. Org Lett. 2022;24:8627-32. [4] Yang NN, Jiang N, Ma QY, Kong FD, Xie QY, Zhou LM, Yu ZF, Zhao YX. Chemical study of the strain Cordyceps spp. from cell fusion between Cordyceps Militaris and cordyceps cicadae. J Asian Nat Prod Res. 2019;21:449-55. [5] Su QH, Zhang ZC, Liu XC, Wang F. The transcriptome analysis on urea response mechanism in the process of ergosterol synthesis by Cordyceps cicadae. Sci Rep 2021;11:10927. [6] Wang YN, Zeng TT, Li H, Wang YD, Wang JH, Yuan HB. Structural characterization and hypoglycemic function of polysaccharides from Cordyceps cicadae. Molecules 2023;28:526. [7] Yang JL, Dong HB, Wang Y, Jiang Y, Zhang WN, Lu YM, Chen Y, Chen L. Cordyceps Cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic Nephropathy rats by repressing inflammation andmodulating gut microbiota dysbiosis. Int J Biol Macromol. 2020;163:442-56. [8] Wang L, He YG, Li YD, Pei CB, Olatunji OJ, Tang J, Famurewa AC, Wang HY, Yan B. Protective effects of nucleosides-Rich Extract from Cordyceps cicadae against Cisplatin Induced testicular damage. Chem Biodivers. 2020;17:e2000671. [9] Xie HQ, Li XT, Chen YJ, Lang MZ, Shen ZF, Shi LE. Ethanolic extract of Cordyceps Cicadae exerts antitumor effect on human gastric cancer SGC-7901 cells by inducing apoptosis, cell cycle arrest and endoplasmic reticulum stress. J Ethnopharmacol. 2019;231:230-40. [10] Olatunji OJ, Feng Y, Olatunji OO, Tang J, Ouyang Z, Su ZL, Wang DJ, Yu XF. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells. Environ Toxicol Phar. 2016;44:53-61. [11] Zhang Y, Wu YT, Zheng W, Han XX, Jiang YH, Hu PL, Tang ZX, Shi LE. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J Funct Foods. 2017;38:273-9. [12] Li IC, Lin S, Tsai YT, Hsu JH, Chen YL, Lin WH, Chen CC. Cordyceps cicadae mycelia and its active compound HEA exert beneficial effects on blood glucose in type 2 diabetic db/db mice. J Sci Food Agr. 2019;99:606-12. [13] Gu BB, Wu W, Jiao FR, Jiao WH, Li L, Sun F, Wang SP, Yang F, Lin HW. Asperflotone, an 8(14→15)-abeo-ergostane from the sponge-derived Fungus Aspergillus flocculosus 16D-1. J Org Chem. 2019;84:300-6. [14] Grudniewska A, Hayashi S, Shimizu M, Kato M, Suenaga M, Imagawa H, Ito T, Asakawa Y, Ban S, Kumada T, Hashimoto T, Umeyama A. Opaliferin, a new polyketide from cultures of entomopathogenic fungus Cordyceps sp. NBRC 106954. Org Lett. 2014;16:4695-7. [15] Kagamizono T, Nishino E, Matsumoto K, Kawashima A, Kishimoto M, Sakai N, He BM, Chen ZX, Adachi T, Morimoto S, Hanada K. Bassiatin, a new platelet aggregation inhibitor produced by Beauveria bassiana K-717. J Antibiot. 1995;48:1407-12. [16] Zhou L, Chen HP, Li XY, Liu JK. Ganoaustralins a and B, unusual aromatic triterpenes from the mushroom Ganoderma Australe. Pharmaceuticals 2022;15:1520. [17] Zhou L, Akbar S, Wang M-X, Chen H-P, Liu J-K. Tetra-, penta-, and hexa-nor-lanostane triterpenes from the medicinal fungus Ganoderma Australe. Nat Prod Bioprospect. 2022;12:32. [18] Wang QY, Chen HP, Wu KY, Li XY, Liu JK. Antibacterial and beta-amyloid precursor protein-cleaving enzyme 1 inhibitory polyketides from the fungus Aspergillus chevalieri. Front Microbiol. 2022;13:1051281. [19] Gaussian 16, Revision C01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta J, Ogliaro JE, Bearpark F, Heyd MJ, Brothers JJ, Kudin EN, Staroverov KN, Keith VN, Kobayashi TA, Normand R, Raghavachari J, Rendell K, Burant AP, Iyengar JC, Tomasi SS, Cossi J, Millam M, Klene JM, Adamo M, Cammi C, Ochterski R, Martin JW. R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016. [20] Bruhn T, Schaumloffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism Spectra. Chirality. 2013;25:243-9. [21] Parsons S, Flack HD, Wagner T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B. 2013;69:249-59. [22] Chen HP, Zhao ZZ, Li ZH, Huang Y, Zhang SB, Tang Y, Yao JN, Chen L, Isaka M, Feng T, Liu JK. Anti-proliferative and anti-inflammatory lanostane triterpenoids from the polish edible mushroom Macrolepiota procera. J Agric Food Chem. 2018;66:3146-54. |
[1] | Wei-Ye Wu, Xun Wei, Qiong Liao, Yi-Fan Fu, Lei-Ming Wu, Lei Li, Shu-Qi Wu, Qing-Ren Lu, Fang-Yu Yuan, Dong Huang, Zhang-Hua Sun, Tao Yuan, Gui-Hua Tang. Structurally diverse polyketides and alkaloids produced by a plant-derived fungus Penicillium canescens L1[J]. 应用天然产物, 2025, 15(3): 22-22. |
[2] | Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis[J]. 应用天然产物, 2025, 15(1): 10-10. |
[3] | Yin-Ping Song, Nai-Yun Ji. Chemistry and biology of marine-derived Trichoderma metabolites[J]. 应用天然产物, 2024, 14(3): 14-14. |
[4] | Yue Zhao, Wen-Ke Gao, Xiang-Dong Wang, Li-Hua Zhang, Hai-Yang Yu, Hong-Hua Wu. Phytochemical and pharmacological studies on Solanum lyratum: a review[J]. 应用天然产物, 2022, 12(6): 39-39. |
[5] | Mei-Ling Xiang, Bin-Yuan Hu, Zi-Heng Qi, Xiao-Na Wang, Tian-Zhen Xie, Zhao-Jie Wang, Dan-Yu Ma, Qi Zeng, Xiao-Dong Luo. Chemistry and bioactivities of natural steroidal alkaloids[J]. 应用天然产物, 2022, 12(4): 23-23. |
[6] | Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. 应用天然产物, 2021, 11(6): 651-658. |
[7] | Meng Wang, Zheng-Hui Li, Masahiko Isaka, Ji-Kai Liu, Tao Feng. Furan Derivatives and Polyketides from the Fungus Irpex lacteus[J]. 应用天然产物, 2021, 11(2): 215-222. |
[8] | Tin Thu Thu Aung, Meng-Yuan Xia, Pyae Phyo Hein, Rong Tang, Dong-Dong Zhang, Jun Yang, Xue-Fei Yang, Dong-Bao Hu, Yue-Hu Wang. Chemical Constituents from the Whole Plant of Cuscuta reflexa[J]. 应用天然产物, 2020, 10(5): 337-344. |
[9] | Kai-Yue Han, Xing Wu, Chenglin Jiang, Rong Huang, Zheng-Hui Li, Tao Feng, He-Ping Chen, Ji-Kai Liu. Three New Compounds from the Actinomycete Actinocorallia aurantiaca[J]. 应用天然产物, 2019, 9(5): 351-354. |
[10] | Hai-Li Yu, Qin Long, Wen-Fang Yi, Bao-Jia Yang, Yu Song, Xiao Ding, Shun-Lin Li, Xiao-Jiang Hao. Two New C21 Steroidal Glycosides from the Roots of Cynanchum paniculatum[J]. 应用天然产物, 2019, 9(3): 209-214. |
[11] | Qi Liu, Quan Chi, Ru-Ting Fan, Hui-Dong Tian, Xian Wang. Quantitative-Profiling Method of Serum Steroid Hormones by Hydroxylamine-Derivatization HPLC-MS[J]. 应用天然产物, 2019, 9(3): 201-208. |
[12] | Joseph Sakah Kaunda, Ying-Jun Zhang. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review[J]. 应用天然产物, 2019, 9(2): 77-137. |
[13] | Xu-Jie Qin, Wei Ni, Chang-Xiang Chen, Hai-Yang Liu. Untiring Researches for Alternative Resources of Rhizoma Paridis[J]. 应用天然产物, 2018, 8(4): 265-278. |
[14] | Li-Wen Tian, Zhen Zhang, Hai-Lan Long, Ying-Jun Zhang. Steroidal Saponins from the Genus Smilax and Their Biological Activities[J]. 应用天然产物, 2017, 7(4): 283-298. |
[15] | Kai Liu, Ya-Bin Yang, Jin-Lian Chen, Cui-Ping Miao, Qiang Wang, Hao Zhou, You-Wei Chen, Yi-Qing Li, Zhong-Tao Ding, Li-Xing Zhao. Koninginins N-Q, Polyketides from the Endophytic Fungus Trichoderma koningiopsis Harbored in Panax notoginseng[J]. 应用天然产物, 2016, 6(1): 49-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||