Bulletin of Botanical Research ›› 2025, Vol. 45 ›› Issue (2): 277-286.doi: 10.7525/j.issn.1673-5102.2025.02.013

• Original Paper • Previous Articles    

Population Variation of Leaf Traits and Its Correlation with Environmental Factors of Caragana halodendron

Changli ZHAO, Liwei ZHOU, Kerou ZHOU, Yueqi YOU, Zhixiang ZHANG   

  1. School of Ecology and Nature Conservation,Beijing Forestry University,Beijing 100083
  • Received:2024-10-31 Online:2025-03-20 Published:2025-04-07

Abstract:

To explore the environmental adaptation mechanisms of Caragana halodendron in leaf traits, to provide a theoretical basis for breeding superior varieties of C. halodendron, and protection of species diversity in desert areas, soil and water conservation, and desertification mitigation, the phenotypic variations among different populations and their relationships with environmental factors were analyzed respectively. The 108 individuals from 18 natural populations of C. halodendron were used as research materials, and 11 leaf-related traits and 28 environmental factors were collected. Pearson correlation analysis and principal component analysis were utilized to explore the variation patterns of leaf traits and their correlations with environmental factors. The results showed that: (1)There were remarkably significant differences in the leaf traits of C.halodendron among different populations. The variation coefficient of leaf traits ranged from 9.42% to 83.12% among the populations and 1.58% to 59.07% intra-populations. Through a detailed comparison of the variation coefficient of traits within and among populations, it was evident that the average coefficient of variation among populations(31.17%) for all traits was higher than that within populations(21.86%). (2)Correlation analysis of leaf traits revealed significant positive correlation between traits related to leaf shape (leaf length, leaf width, leaf area, specific leaf area)(P<0.05), and leaf water content showed a significant positive correlation with leaf shape traits(P<0.05). (3) Four principal components extracted from trait principal component analysis accounted for a cumulative contribution rate of 91.13%. (4)The correlation analysis between leaf traits and environmental factors showed that leaf shape, rachis length, stipular spine length, and the number of leaflets were extremely significantly correlated with multiple environmental factors such as drought, precipitation, temperature, and soil(P<0.01), whereas specific leaf area was only extremely significantly correlated with multiple environmental factors(P<0.01). The variation in leaf traits reflects the adaptability of this species to arid and saline-alkali environments and the strategy of C. halodendron adapting to environmental pressure by adjusting traits such as leaf shape, rachis length, and leaf water content. This work provided important insights for understanding the adaptation mechanism of desert plants.

Key words: Caragana halodendron, intra-specific variation, leaf trait variation, environmental adaptation

CLC Number: