植物研究 ›› 2024, Vol. 44 ›› Issue (3): 380-388.doi: 10.7525/j.issn.1673-5102.2024.03.007
• 生理与生态 • 上一篇
高艳如1, 王军辉2, 麻文俊2, 王福德3, 安三平4, 谷加存1()
收稿日期:
2024-01-31
出版日期:
2024-05-20
发布日期:
2024-05-14
通讯作者:
谷加存
E-mail:gjcnefu@163.com
作者简介:
高艳如(1999—),女,硕士研究生,主要从事森林培育研究。
基金资助:
Yanru GAO1, Junhui WANG2, Wenjun MA2, Fude WANG3, Sanping AN4, Jiacun GU1()
Received:
2024-01-31
Online:
2024-05-20
Published:
2024-05-14
Contact:
Jiacun GU
E-mail:gjcnefu@163.com
摘要:
为揭示不同种源和家系红皮云杉(Picea koraiensis)细根(直径≤2 mm)形态和生物量垂直分布特征,以黑龙江省林口县青山林场4个种源(纬度从低到高分别为穆棱、林口、金山屯、乌伊岭)30个家系的24年生红皮云杉试验林为研究对象,采用根钻法研究了不同土壤深度(h)(表层:0<h≤10 cm,亚表层:10 cm<h≤20 cm,底层:20 cm<h≤30 cm)细根形态和生物量垂直分布规律。结果表明:不同种源红皮云杉细根形态特征存在显著差异,而同一种源不同家系间比根长和根组织密度存在显著差异。在种源水平,所有土层根平均直径均以穆棱种源最粗,比根长和根组织密度则均是林口种源最大。在家系水平,0<h≤10 cm土层根直径W035最粗、CK-2最细,比根长CK-2最大、W043最小,根组织密度J082最高、M515最低。不同种源和家系红皮云杉根组织密度和比根长均随土层加深而减小,而根直径随土层的加深有增大的趋势。4个种源的细根总生物量平均值为33.56 g·m-2,其中林口种源细根生物量最大(39.04 g·m-2),金山屯种源细根生物量最小(32.52 g·m-2),呈现出非连续的地理变异。细根生物量均随土层的加深而减小,土壤表层根系生物量占总生物量的比例平均为77%。相比较,低纬度的穆棱种源各家系细根生物量在土壤亚表层和底层分布比例较高,高纬度的乌伊岭和金山屯种源各家系细根生物量在土壤表层分布比例较高,表明温度较低地区的红皮云杉倾向于将细根分布在资源丰富的土壤表层。
中图分类号:
高艳如, 王军辉, 麻文俊, 王福德, 安三平, 谷加存. 不同种源和家系红皮云杉细根形态与生物量垂直分布特征[J]. 植物研究, 2024, 44(3): 380-388.
Yanru GAO, Junhui WANG, Wenjun MA, Fude WANG, Sanping AN, Jiacun GU. Characteristics of Fine Root Morphology and Biomass Vertical Distribution from Different Provenances and Families of Picea koraiensis[J]. Bulletin of Botanical Research, 2024, 44(3): 380-388.
表1
不同种源地家系号、气候及当前林分与土壤特征
种源 Provenance | 北纬度 Latitude/ (°) | 东经度 Longitude/ (°) | 年均温 Mean annual temperature/ ℃ | 年降水量 Mean annual precipitation/ mm | 树高 Height/m | 胸径 Diameter at the breast height/ cm | 土壤pH Soil pH | 土壤全氮 Soil total nitrogen/ (g·kg-1) | 土壤全磷 Soil total phosphorus/ (g·kg-1) | 家系号 Family number |
---|---|---|---|---|---|---|---|---|---|---|
穆棱 Muling(M) | 44.83 | 130.53 | 3.6 | 557 | 6.7±0.1 | 9.3±1.3 | 5.5±0.3 | 8.5±0.2 | 0.9±0.1 | M516、M543、M028、M95002、M523、M505、M515、M030、M530 |
林口 Linkou(CK) | 45.46 | 130.56 | 3.2 | 650 | 6.2±0.1 | 7.6±0.1 | 5.7±0.3 | 8.4±0.2 | 0.8±0.2 | CK-1、CK-2、CK-3 |
金山屯 Jingshantun(J) | 47.60 | 129.82 | 0.4 | 630 | 6.7±0.4 | 9.5±0.2 | 5.5±0.2 | 8.7±0.3 | 0.9±0.2 | J082、J076、J079、J059、J066、J075、J080、J083、J074 |
乌伊岭 Wuyiling(W) | 48.59 | 129.44 | -1.1 | 586 | 6.7±0.1 | 9.8±0.2 | 5.6±0.2 | 8.4±0.2 | 0.9±0.3 | W043、W010、W030、W029、W039、W045、W005、W015、W035 |
表2
不同种源和家系(0<h ≤10 cm土层)红皮云杉细根形态特征
项目 Item | 穆棱(M) Muling | 林口(CK) Linkou | 金山屯(J) Jinshantun | 乌伊岭(W) Wuyiling | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
直径 DR/mm | 比根长 SRL/(m·g-1) | 根组织密度 RTD/(g·cm-3) | 直径 DR/mm | 比根长 SRL/(m·g-1) | 根组织密度 RTD/(g·cm-3) | 直径 DR/mm | 比根长 SRL/(m·g-1) | 根组织密度 RTD/(g·cm-3) | 直径 DR/mm | 比根长 SRL/(m·g-1) | 根组织密度 RTD/(g·cm-3) | |
平均值Mean | 0.35a | 22.67c | 0.33b | 0.31b | 25.57a | 0.31c | 0.34a | 22.14c | 0.35a | 0.34a | 23.22b | 0.36a |
标准误Standard error | 0.00 | 4.36 | 0.02 | 0.11 | 1.69 | 0.02 | 0.01 | 0.75 | 0.01 | 0.01 | 2.42 | 0.02 |
最大值Maximum | 0.37 | 28.46 | 0.35 | 0.32 | 29.35 | 0.38 | 0.37 | 25.18 | 0.44 | 0.38 | 28.87 | 0.39 |
最大值对应家系 The family of the maximum | M543 | M543 | M543 | CK-2 | CK-2 | CK-3 | J082 | J083 | J082 | W035 | W039 | W045 |
最小值Minimum | 0.33 | 18.37 | 0.30 | 0.29 | 25.43 | 0.33 | 0.32 | 20.28 | 0.34 | 0.31 | 17.20 | 0.31 |
最小值对应家系 The family of the minimum | M515 | M030 | M515 | CK-3 | CK-3 | CK-2 | J066 | J082 | J080 | W030 | W043 | W005 |
同一种源不同家系间的 差异显著性 P values of ANOVA for the effect of family within provenance | 0.159 | 0.036 | 0.042 | 0.162 | 0.025 | 0.019 | 0.187 | 0.037 | 0.021 | 0.179 | 0.029 | 0.041 |
变异系数CV/% | 10.0 | 19.0 | 6.0 | 4.0 | 6.0 | 6.0 | 5.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 |
表3
不同种源和家系红皮云杉细根总生物量
种源 Provenance | 平均值 Mean | 标准误 Standard error | 最大值 Maximum | 最大值 对应家系 The family of the maximum | 最小值 Minimum | 最小值 对应家系 The family of the minimum | 同一种源不同家系间的 差异显著性 P values of ANOVA for the effect of family within provenance | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
穆棱 Muling(M) | 34.63b | 8.32 | 48.46 | M515 | 28.48 | M530 | 0.026 | 24.0 |
林口 Linkou(CK) | 39.04a | 3.95 | 41.47 | CK-2 | 27.45 | CK-3 | 0.044 | 10.0 |
金山屯 Jingshantun(J) | 32.52b | 6.26 | 46.65 | J079 | 22.67 | J080 | 0.030 | 19.0 |
乌伊岭 Wuyiling(W) | 38.64a | 9.17 | 52.22 | W035 | 23.03 | W039 | 0.035 | 30.0 |
1 | 苏丽,董波涛,孙佳,等.地下水位对黄河三角洲柽柳根系生长的影响[J].生态学报,2021,41(10):3794-3804. |
SU L, DONG B T, SUN J,et al.Effect of groundwater depth on root growth of Tamarix chinensis in the Yellow River Delta[J].Acta Ecologica Sinica,2021,41(10):3794-3804. | |
2 | CHEN W, KOIDE R T, ADAMS T S,et al.Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(31):8741-8746. |
3 | 郑高超,苏香萍,王思荣,等.不同林龄杉木人工林细根生物量的变化特征分析[J].福建农业科技,2023,54(7):41-47. |
ZHENG G C, SU X P, WANG S R,et al.Analysis of the variation characteristics of fine root biomass in Cunninghamia lanceolata plantation forest of different stand ages[J].Fujian Agricultural Science and Technology,2023,54(7):41-47. | |
4 | ERKTAN A, MCCORMACK M L, ROUMET C.Frontiers in root ecology:recent advances and future challenges[J].Plant and Soil,2018,424:1-9. |
5 | FU B J, WANG S, LIU Y,et al.Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J].Annual Review of Earth and Planetary Sciences,2017,45(1):223-243. |
6 | YIN K, ZHANG L, CHEN D M,et al.Understory herb layer exerts strong controls on soil microbial communities in subtropical plantations[J].Scientific Reports,2016,6:27066. |
7 | 孙彦华,于辉.红皮云杉林研究进展综述[J].林业勘查设计,2010(4):93-94. |
SUN Y H, YU H.Review on research progress of Picea koraiensis forest[J].Forest Investigation Design,2010(4) :93-94. | |
8 | 李秉钧,颜耀,张辉,等.不同种源杉木细根根序及碳氮计量的比较分析[J].森林与环境学报,2019,39(6):561-567. |
LI B J, YAN Y, ZHANG H,et al.Comparison of fine root order and carbon and nitrogen content in Chinese fir from different provenances[J].Journal of Forest and Environment,2019,39(6):561-567. | |
9 | 初兴国,康迎昆.红皮云杉优良家系选择及不同栽培模式的研究[J].林业勘查设计,2017(1):61-63. |
CHU X G, KANG Y K.Superior family selection and study on different cultivation model of Picea koraiensis [J].Forest Investigation Design,2017(1):61-63. | |
10 | 苏妮尔,沈海龙,丁佩军,等.不同坡位红皮云杉林木生长与土壤理化性质比较[J].森林工程,2020,36(2):6-11. |
SU N E, SHEN H L, DING P J,et al.Comparison of tree growth and soil physical and chemical properties of Picea koraiensis plantation at different slope positions[J].Forest Engineering,2020,36(2):6-11. | |
11 | 周磊,吴慧,王树力.不同林分红皮云杉针叶养分含量及生态化学计量特征研究[J].植物资源与环境学报,2020,29(3):19-25. |
ZHOU L, WU H, WANG S L.Study on nutrient contents and ecological stoichiometric characteristics in needles of Picea koraiensis in different stands[J].Journal of Plant Resources and Environment,2020,29(3):19-25. | |
12 | 王福德,翁海龙,周显昌.红皮云杉优良家系选择方法的研究[J].林业科技,2017,42(1):30-31. |
WANG F D, WENG H L, ZHOU X C.Study on the selection method of superior family of Picea koraiensis [J].Forestry Science and Technology,2017,42(1):30-31. | |
13 | MCCORMACK M L, DICKIE I A, EISSENSTAT D M,et al.Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J].New Phytologist,2015,207(3):505-518. |
14 | CHEN L X, ZHANG C, DUAN W B.Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larix olgensis plantations[J].Journal of Plant Nutrition and Soil Science,2016,179(1):67-77. |
15 | SCHMID I.The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J].Basic and Applied Ecology,2017,3(4):339-346. |
16 | BAUHUS J, MESSIER C.Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada[J].Canadian Journal of Forest Research,2019,29(2):260-273. |
17 | COMAS L H, EISSENSTAT D M.Patterns in root trait variation among 25 co-existing North American forest species[J].New Phytologist,2009,182(4):919-928. |
18 | BRASSARD B W, CHEN H Y H, BERGERON Y,et al.Differences in fine root productivity between mixed- and single-species stands[J].Functional Ecology,2011,25(1):238-246. |
19 | LI L, SUN J H, ZHANG F S,et al.Root distribution and interactions between intercropped species[J].Oecologia,2006,147:280-290. |
20 | SOHN R F. Pisolithus tinctorius forms long ectomycorrhizae and alters root development in seedlings of Pinus resinosa [J].Canadian Journal of Botany,1981,59(11):129-134. |
21 | 程云环,韩有志,王庆成,等.落叶松人工林细根动态与土壤资源有效性关系研究[J].植物生态学报,2005,29(3):403-410. |
CHENG Y H, HAN Y Z, WANG Q C,et al.Seasonal dynamics of fine root biomass,root length density,specific root length and soil resource availability in a Larix gmelini plantation[J].Chinese Journal of Plant Ecology,2005,29(3):403-410. | |
22 | MAKITA N, HIRANO Y, MIZOGUCHI T,et al.Very fine roots respond to soil depth:biomass allocation,morphology,and physiology in a broad-leaved temperate forest[J].Ecological Research,2011,26:95-104. |
23 | WANG Y, LI Z Y, WANG Z Q,et al.Functional trait plasticity but not coordination differs in absorptive and transport fine roots in response to soil depth[J].Forests,2020,11(1):42. |
24 | OSTONEN I, TRUU M, HELMISAARI H S,et al.Adaptive root foraging strategies along a boreal-temperate forest gradient[J].New Phytologist,2017,215(3):977-991. |
25 | ZADWORNY M, MCCORMACK M L, ŻYTKOWIAK R,et al.Patterns of structural and defense investments in fine roots of scots pine(Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe[J].Global Change Biology,2017,23(3):1218-1231. |
26 | 杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征[J].生态学报,2007,27(9):3609-3617. |
YANG L W, LUO T X, WU S T.Fine root biomass and its depth distribution across the primitive Pinus koraiensis and broad-leaved forest and its secondary forests in Changbai Mountain,northeast China[J].Acta Ecologica Sinica,2007,27(9):3609-3617. | |
27 | 朱胜英,周彪,毛子军,等.帽儿山林区6种林分细根生物量的时空动态[J].林业科学,2006,42(6):13-19. |
ZHU S Y, ZHOU B, MAO Z J,et al.Space-time dynamics of fine root biomass of six forests in Maoershan forest region[J].Scientia Silvae Sinicae,2006,42(6):13-19. | |
28 | 孙楠,张怡春,赵眉芳.长白落叶松人工林根系生物量及其垂直分布特征[J].森林工程,2021,37(6) :17-24. |
SUN N, ZHANG Y C, ZHAO M F.Root biomass and vertical distribution characteristics ofLarch plantation[J].Forest Engineering,2021,37(6):17-24. | |
29 | 程瑞梅,王瑞丽,肖文发,等.三峡库区马尾松根系生物量的空间分布[J].生态学报,2012,32(3):823-832. |
CHENG R M, WANG R L, XIAO W F,et al.Spatial distribution of root biomass of Pinus massoniana plantation in three Gorges Reservoir area,China[J].Acta Ecologica Sinica,2012,32(3):823-832. | |
30 | 白红梅,李钢铁,岳永杰,等.兴安落叶松细根生物量与垂直分布特征[J].内蒙古林业科技,2015,41(2):4-7. |
BAI H M, LI G T, YUE Y J,et al.The fine root biomass and vertical distribution feature of Larix gmelinii [J].Journal of Inner Mongolia Forestry Science and Technology,2015,41(2):4-7. | |
31 | HELMISAARI H S, DEROME J, NÖJD P,et al.Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J].Tree Physiology,2007,27(10):1493-1504. |
32 | 苏纪帅,程积民,高阳,等.宁夏大罗山4种主要植被类型的细根生物量[J].应用生态学报,2013,24(3):626-632. |
SU J S, CHENG J M, GAO Yet al.Fine root biomass of four main vegetation types in Daluo Mountain of Ningxia,northwest China[J].Chinese Journal of Applied Ecology,2013,24(3):626-632. | |
33 | LEHMANN J.Subsoil root activity in tree-based cropping systems[J].Plant and Soil,2003,255:319-331. |
34 | MAJOR J E, JOHNSEN K H, BARSI D C,et al.Fine and coarse root parameters from mature black spruce displaying genetic × soil moisture interaction in growth[J].Canadian Journal of Forest Research,2012,42(11):1926-1938. |
35 | MWITWA J P, MUNTHALI C R Y, VAN WYK G.Heritability of shoot die-back and root biomass in sixteen Pterocarpus angolensis(Fabaceae) half-sib families from Malawi,Namibia and Zambia[J].Southern Forests:A Journal of Forest Science,2008,70(3):221-226. |
36 | 张锁,樊军锋,刘永红,等.陕西省油松不同种源和家系苗期性状的遗传变异分析[J].西北农林科技大学学报(自然科学版),2010,38(4):64-70. |
ZHANG S, FAN J F, LIU Y H,et al.Genetic variation analysis of seedling characteristics among different provenances and families of Pinus tabulaegormis in Shanxi Province[J].Journal of Northwest A&F University(Natural Science Edition),2010,38(4):64-70. | |
37 | OLEKSYN J, REICH P B, CHALUPKA W,et al.Differential above-and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment[J].Scandinavian Journal of Forest Research,1999,14(1):7-17. |
[1] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[2] | 李赵毅, 郝龙飞, 刘婷岩, 何炎红, 张友, 白淑兰, 杨昕瑜. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响[J]. 植物研究, 2022, 42(5): 886-895. |
[3] | 王丹, 李亚麒, 孙继伟, 李江飞, 陈诗, 许玉兰, 蔡年辉. 不同家系云南松苗木生长的异速现象[J]. 植物研究, 2021, 41(6): 965-973. |
[4] | 魏志刚, 夏德安, 王瑞琪, 张洋, 刘莹莹, 李若林, 杨传平. 小兴安岭天然次生林不同林型下红松种源试验[J]. 植物研究, 2021, 41(5): 807-815. |
[5] | 孙硕, 王秀伟, 杜梦甜, 李京航, 王博一, 刘桂丰. 不同种源白桦根CO2释放通量地点和根径级间的差异[J]. 植物研究, 2020, 40(3): 476-480. |
[6] | 林琳, 高宇婷, 程福山, 辛本花, 王贵春, 夏富才, 穆怀志. 赛黑桦不同半同胞家系种子活力比较[J]. 植物研究, 2020, 40(1): 125-132. |
[7] | 张秦徽, 王洪武, 姜国云, 沈光, 王连奎, 李焱龙, 王雷, 王立祥, 李月季, 李蕊, 赵曦阳. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4): 557-567. |
[8] | 栾柯权, 张恒, 田永刚, 杨书成, 王洪武, 王连奎, 李焱龙, 陆志民, 赵曦阳. 不同树龄水曲柳半同胞家系生长性状变异研究[J]. 植物研究, 2019, 39(2): 239-245. |
[9] | 姜国云, 蒋路平, 宋双林, 王井源, 王淇, 王连福, 张鹏, 赵曦阳. 红松半同胞家系遗传变异分析及果材兼用优良家系选择[J]. 植物研究, 2018, 38(5): 775-784. |
[10] | 黄海娇, 彭儒胜, 刘宇, 姜静. 3年生不同倍性白桦家系生长性状变异分析及优良家系的选择[J]. 植物研究, 2017, 37(2): 274-280. |
[11] | 文珊娜, 仲崇禄, 姜清彬, 陈羽, 张勇, 李清莹. 灰木莲种源幼苗叶片性状表型多样性分析[J]. 植物研究, 2017, 37(2): 288-297. |
[12] | 侯丹, 张莉, 魏志刚, 周春艳, 夏德安. 红松种源遗传变异及高固碳种源选择的研究[J]. 植物研究, 2016, 36(3): 452-460. |
[13] | 张振;张含国*;张磊. 红松自由授粉子代家系生产力年度变异与家系选[J]. 植物研究, 2016, 36(2): 305-309. |
[14] | 周志强1;胡燕妮1;彭英丽1;孙铭隆1;张玉红1;刘彤2*. 3种丛枝菌根真菌对不同种源黄檗幼苗的影响[J]. 植物研究, 2015, 35(1): 92-100. |
[15] | 袁显磊;祁永会;刘忠玲;周志军;毛子军*. 核桃楸种源选择试验及其环境因子的影响[J]. 植物研究, 2013, 33(4): 468-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||