植物研究 ›› 2018, Vol. 38 ›› Issue (6): 931-938.doi: 10.7525/j.issn.1673-5102.2018.06.017
王家啟, 张曦, 李莉
收稿日期:
2018-06-19
出版日期:
2018-11-15
发布日期:
2018-11-01
通讯作者:
李莉
E-mail:lili@nefu.edu.cn
作者简介:
王家啟(1993-),男,硕士研究生,主要从事植物分子生物学研究。
基金资助:
WANG Jia-Qi, ZHANG Xi, LI Li
Received:
2018-06-19
Online:
2018-11-15
Published:
2018-11-01
Supported by:
摘要: HD-Zip转录因子蛋白家族是植物特有的一类转录因子蛋白,在植物生长发育和抵抗逆境胁迫等过程中发挥着重要作用。利用白桦全基因组数据库,获得白桦35条HD-Zip蛋白序列,参考拟南芥中该家族的分类方法,将这些成员分成HD-ZipⅠ-Ⅳ四个亚家族,并对这些成员的蛋白保守结构域、氨基酸组成、染色体分布、和理化性质等进行了预测和分析。从高盐处理的白桦幼苗根组织的转录组数据,鉴定了7个差异表达的基因。本研究为进一步研究白桦HD-Zip家族基因调控白桦耐盐性的功能提供了理论支持。
中图分类号:
王家啟, 张曦, 李莉. 白桦HD-Zip基因家族生物信息学及应答盐胁迫分析[J]. 植物研究, 2018, 38(6): 931-938.
WANG Jia-Qi, ZHANG Xi, LI Li. Bioinformatic and Expression Analysis of HD-Zip Family Gene in Betula platyphylla[J]. Bulletin of Botanical Research, 2018, 38(6): 931-938.
1. Liu Q,Zhang G Y,Chen S Y. Structure and regulatory function of plant transcription factors[J]. Chinese Science Bulletin,2001,46(4):271-278. 2. Nakashima K,Ito Y,Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology,2009,149(1):88-95. 3. Golldack D,Lüking I,Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391. 4. Wang H Y,Wang H L,Shao H B,et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science,2016,7:67. 5. Todaka D,Shinozaki K,Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants[J]. Frontiers in Plant Science,2015,6:84. 6. Viola I L,Gonzalez D H. Chapter 6-structure and evolution of plant homeobox genes[J]. Plant Transcription Factors:Evolutionary,Structural and Functional Aspects,2016:101-112. 7. Ariel F D,Manavella P A,Dezar C A,et al. The true story of the HD-Zip family[J]. Trends in Plant Science,2007,12(9):419-426. 8. Elhiti M,Stasolla C. Structure and function of homodomain-leucine zipper(HD-Zip) proteins[J]. Plant Signaling & Behavior,2009,4(2):86-88. 9. Arce A L,Raineri J,Capella M,et al. Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity[J]. BMC Plant Biology,2011,11:42. 10. Henriksson E,Olsson A S B,Johannesson H,et al. Homeodomain leucine zipper class I genes in Arabidopsis expression patterns and phylogenetic relationships[J]. Plant Physiology,2005,139(1):509-518. 11. Aoyama T,Dong C H,WU Wu Y,et al. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco[J]. The Plant Cell,1995,7(11):1773-1785. 12. Kim Y K,Son O,Kim M R,et al. ATHB23,an Arabidopsis class Ⅰ homeodomain-leucine zipper gene,is expressed in the adaxial region of young leaves[J]. Plant Cell Reports,2007,26(8):1179-1185. 13. Harris J C,Sornaraj P,Taylor M,et al. Molecular interactions of the γ-clade homeodomain-leucine zipper class Ⅰ transcription factors during the wheat response to water deficit[J]. Plant Molecular Biology,2016,90(4-5):435-452. 14. Zhao Y,Ma Q,Jin X L,et al. A novel maize homeodomain-leucine zipper(HD-Zip) Ⅰ gene, Zmhdz10,positively regulates drought and salt tolerance in both rice and Arabidopsis[J]. Plant and Cell Physiology,2014,55(6):1142-1156. 15. Ciarbelli A R,Ciolfi A,Salvucci S,et al. The Arabidopsis homeodomain-leucine Zipper Ⅱ gene family:diversity and redundancy[J]. Plant Molecular Biology,2008,68:465. 16. Franklin K A,Praekelt U,Stoddart W M,et al. Phytochromes B,D and E act redundantly to control multiple physiological responses in Arabidopsis[J]. Plant Physiology,2003,131(3):1340-1346. 17. Carabelli M,Turchi L,Ruzza V,et al. Homeodomain-Leucine zipper Ⅱ family of transcription factors to the limelight:central regulators of plant development[J]. Plant Signaling & Behavior,2013,8(9):e25447. 18. Park M Y,Kim S A,Lee S J,et al. ATHB17 is a positive regulator of abscisic acid response during early seedling growth[J]. Molecules and Cells,2013,35(2):125-133. 19. Mukherjee K,Bürglin T R. MEKHLA,a novel domain with similarity to PAS domains,is fused to plant homeodomain-leucine zipper Ⅲ proteins[J]. Plant Physiology,2006,140(4):1142-1150. 20. Prigge M J,Otsuga D,Alonso J M,et al. Class Ⅲ homeodomain-leucine zipper gene family members have overlapping,antagonistic,and distinct roles in Arabidopsis development[J]. The Plant Cell,2005,17(1):61-76. 21. Zhu Y Y,Song D L,Sun J Y,et al. PtrHB7,a class Ⅲ HD-Zip gene,plays a critical role in regulation of vascular cambium differentiation in Populus[J]. Molecular Plant,2013,6(4):1331-1343. 22. Robischon M,Du J,Miura E,et al. The Populus class Ⅲ HD ZIP, popREVOLUTA,influences cambium initiation and patterning of woody stems[J]. Plant Physiology,2011,155(3):1214-1225. 23. Chew W,Hrmova M,Lopato S. Role of homeodomain leucine zipper(HD-Zip) Ⅳ transcription factors in plant development and plant protection from deleterious environmental factors[J]. International Journal of Molecular Sciences,2013,14(4):8122-8147. 24. Ingram G C,Boisnard-Lorig C,Dumas C,et al. Expression patterns of genes encoding HD-Zip Ⅳ homeo domain proteins define specific domains in maize embryos and meristems[J]. The Plant Journal,2000,22(5):401-414. 25. Ito M,Sentoku N,Nishimura A,et al. Position dependent expression of GL2 -type homeobox gene,Roc1:significance for protoderm differentiation and radial pattern formation in early rice embryogenesis[J]. The Plant Journal,2002,29(4):497-507. 26. Nakamura M,Katsumata H,Abe M,et al. Characterization of the class Ⅳ homeodomain-leucine zipper gene family in Arabidopsis[J]. Plant Physiology,2006,141(4):1363-1375. 27. Ciarbelli A R,Ciolfi A,Salvucci S,et al. The Arabidopsis Homeodomain-leucine Zipper Ⅱ gene family:diversity and redundancy[J]. Plant Molecular Biology,2008,68(4-5):465-478. 28. Agalou A,Purwantomo S,Övernäs E,et al. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant Molecular Biology,2008,66(1-2):87-103. 29. Chen J H,Song Y P,Zhang H,et al. Genome-wide analysis of gene expression in response to drought stress in Populus simonii[J]. Plant Molecular Biology Reporter,2013,31(4):946-962. 30. Hu R B,Chi X Y,Chai G H,et al. Genome-wide identification,evolutionary expansion,and expression profile of homeodomain-leucine zipper gene family in poplar(Populus trichocarpa)[J]. PLoS One,2012,7(2):e31149. 31. Yue H,Shu D T,Wang M,et al. Genome-wide identification and expression analysis of the HD-Zip gene family in wheat(Triticum aestivum L.)[J]. Genes,2018,9(2):70. 32. Zhang J,Zhu Q H,Moncuquet P,et al. Genome-wide identification and characterization of the homeodomain-leucine zipper Ⅰ family of genes in cotton(Gossypium spp.)[J]. Plant Gene,2016,7:50-61. 33. Belamkar V,Weeks N T,Bharti A K,et al. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean(Glycine max) during dehydration and salt stress[J]. BMC Genomics,2014,15:950. 34. Zhao Y,Zhou Y Q,Jiang H Y,et al. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize[J]. PLoS One,2011,6(12):e28488. 35. Ding Z H,Fu L L,Yan Y,et al. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava[J]. PLoS One,2017,12(3):e0173043. 36. Perotti M F,Ribone P A,Chan R L. Plant transcription factors from the homeodomain-leucine zipper family Ⅰ. Role in development and stress responses[J]. IUBMB Life,2017,69(5):280-289. 37. Nakashima K,Jan A,Todaka D,et al. Comparative functional analysis of six drought-responsive promoters in transgenic rice[J]. Planta,2014,239(1):47-60. 38. Ariel F,Diet A,Verdenaud M,et al. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip Ⅰ transcription factor HB1[J]. The Plant Cell,2010,22(7):2171-2183. 39. Dezar C A,Gago G M,González D H,et al. Hahb-4,a sunflower homeobox-leucine zipper gene,is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants[J]. Transgenic Research,2005,14(4):429-440. |
[1] | 王珊珊, 王瑞, 樊二勤, 付鹏跃, 曲冠证, 王楠. 楸树DELLA基因家族生信分析及CbuGRAS9的功能分析[J]. 植物研究, 2024, 44(1): 139-151. |
[2] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[3] | 王景哲, 牛朝奎, 梁馨元, 申晨静, 尹静. 水杨酸在白桦苗期抵御盐碱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 379-387. |
[4] | 杜金霞, 申婷婷, 王浩然, 林一萍, 李慧玉, 张连飞. 白桦BpSPL9基因抑制表达载体的构建及遗传转化研究[J]. 植物研究, 2023, 43(1): 30-35. |
[5] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043. |
[6] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[7] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
[8] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
[9] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[10] | 杨蕴力, 渠畅, 王阳, 刘桂丰, 姜静. 白桦BpPIN5基因启动子组织定位及外源激素应答分析[J]. 植物研究, 2022, 42(1): 104-111. |
[11] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[12] | 赵佳明, 樊二勤, 刘轶, 王智, 王军辉, 曲冠证. 楸树CbuATX1,CbuATX1-like和CbuATX2基因克隆及生物信息学分析[J]. 植物研究, 2022, 42(1): 47-61. |
[13] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[14] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[15] | 吕东林, 李腾, 郭译文, 姜静, 黄海娇. 转基因白桦杂交子代种子活力及外源基因遗传规律分析[J]. 植物研究, 2021, 41(4): 564-572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||