植物研究 ›› 2026, Vol. 46 ›› Issue (1): 51-66.doi: 10.7525/j.issn.1673-5102.2026.01.005
程萌萌1,2,3, 葛彬1,2,3, 寇焙森1,2,3, 关文彬4, 陆海1,2,3, 郭惠红1,2,3, 李慧1,2,3(
)
收稿日期:2025-08-12
出版日期:2026-01-20
发布日期:2026-01-20
通讯作者:
李慧
E-mail:lihui830@bjfu.edu.cn
作者简介:程萌萌(2001—),女,硕士研究生,主要从事树木分子生物学研究。
基金资助:
Mengmeng CHENG1,2,3, Bin GE1,2,3, Beisen KOU1,2,3, Wenbin GUAN4, Hai LU1,2,3, Huihong GUO1,2,3, Hui LI1,2,3(
)
Received:2025-08-12
Online:2026-01-20
Published:2026-01-20
Contact:
Hui LI
E-mail:lihui830@bjfu.edu.cn
摘要:
组蛋白去乙酰化酶(histone deacetylase, HDAC)和组蛋白乙酰转移酶(histone acetyltransferase,HAT)是一组催化组蛋白乙酰化/去乙酰化的可逆酶,在植物生长发育中发挥重要作用。该研究旨在探究文冠果(Xanthoceras sorbifolium)组蛋白去乙酰化酶(XsHDAC)和组蛋白乙酰转移酶(XsHAT)家族成员基因和蛋白特征,重点关注其在种胚发育中的表达模式。对文冠果XsHDACs和XsHATs家族成员进行全基因组鉴定,通过生物信息学方法分析其理化性质、基因结构、保守基序、染色体定位、共线性和顺式作用元件;通过实时荧光定量PCR分析XsHDACs和XsHATs基因在不同组织及种胚发育时期的表达模式。从文冠果基因组中鉴定出15个XsHDACs基因(分属RPD3/HDA1、HD2、SIR2亚家族)和8个XsHATs基因(分属GNAT、MYST、CBP、TAFII250亚家族)。这些基因分散定位于文冠果9条不同染色体上。对XsHDACs和XsHATs蛋白家族成员理化特征分析显示,2个家族多数成员为亲水性蛋白质,呈酸性;亚细胞定位预测显示,XsHDACs和XsHATs蛋白家族成员主要定位于细胞核;系统进化树结果显示,文冠果与同为无患子科(Sapindaceae)的荔枝(Litchi chinensis)亲缘关系较近;蛋白结构预测结果显示,XsHDACs和XsHATs家族成员富含不规则卷曲和α-螺旋。顺式作用元件预测结果显示,XsHDACs和XsHATs基因家族成员的启动子中包含与种子发育、光响应、激素应答及胁迫响应相关元件。实时荧光定量PCR显示,大多数XsHDACs和XsHATs基因家族成员在种胚中高表达,且在种胚发育晚期表达量上升。XsHDACs和XsHATs基因家族在进化中兼具保守性与特异性,其表达模式揭示其家族可能在文冠果种胚发育和油脂合成过程中发挥重要作用。
中图分类号:
程萌萌, 葛彬, 寇焙森, 关文彬, 陆海, 郭惠红, 李慧. 文冠果HDAC和HAT基因家族鉴定及表达模式分析[J]. 植物研究, 2026, 46(1): 51-66.
Mengmeng CHENG, Bin GE, Beisen KOU, Wenbin GUAN, Hai LU, Huihong GUO, Hui LI. Identification and Expression Analysis of HDAC and HAT gene families in Xanthoceras sorbifolium[J]. Bulletin of Botanical Research, 2026, 46(1): 51-66.
表1
引物序列信息
基因名称 Gene name | 正向引物(5′→3′) Forward primer(5′→3′) | 反向引物(5′→3′) Reverse primer(5′→3′) |
|---|---|---|
| XsGAPDHF | GCCAAGACTATCCAACCT | GCAACCACATCAACATCAT |
| XsHDA5 | ACGCTGCCATTCCTCAAAGA | ATGCAGACTCCGATGAACCC |
| XsHDA6 | AGATCAACCGTCCCTTCCCT | AGAAGCCGAAAAGCCCATCA |
| XsHDA8 | CCGGGCTTTCTTGACGTTCT | CCCGCTTTGTCTGCTTCAAC |
| XsHDA9 | GTCTACTTTGGGCCCAACCA | GTCAGCTGAGTGGAATTGCG |
| XsHDA14 | AGTCACTTGTTGCAGCTGGA | AGCCCATGTACACGTTGAGT |
| XsHDA15 | TGCTGGGTGAAAATCCTGGA | GCCCGCCGTACCTTCTTAAT |
| XsHDA19a | GCACTTGGTATGGACGTGGA | TGGACACTAGGTGCATGCTG |
| XsHDA19b | ACCTGGTGCTGTGGTTCTTC | TCCACGTCCATACCAAGTGC |
| XsSRT2 | ACGATATTGGGCAAGGAGCT | ACAGTCCCATGCAACTCAAGT |
| XsSRT4 | TGTCGGATCTCAGTTCCTGG | GGGCTTTCACTTGGTCCTGA |
| XsSRT6a | TGCACCTGTAAACGCCACTA | TGTCGGATCTCAGTTCCTGG |
| XsSRT6b | AGGCTACGCAGAGAAGCTCT | ATACCTGCACCCGTGAACAC |
| XsHDT1a | AGTCGTGAGGTTGAAAGTGACA | AGCCTTCTTATCAGGAACCGG |
| XsHDT1b | AAAGCAGGCACTCCTCAGAC | TAGAGCACCATCAGACCCGA |
| XsHDT3 | GCCCAGAACATAAGCCAGGA | ACTTTTCTCCTCTGCCAGCT |
| XsHAG1 | GCCACCTCTTCCATCCACAA | AGTCCTCAGCATCAGAGTCG |
| XsHAG2 | ATTTGTCCCTCCTGCCAGTG | GCTTCCCAGCAGTTCCTGAA |
| XsHAG3 | TTGATGGAAGAGGCAGAGCG | TCGGGTTGGTTGAGGCATTT |
| XsHAM1 | TTGGCATGCATCCTCACCTT | ACTCAACAGCCCAAGGTCAG |
| XsHAM2 | AGGAGGCTTGATGAATGGGTG | GTTCACGTAAACTGGCAGCA |
| XsHAC1 | GAGTAATGCCGGGTGATGGA | GATGGAGGCTTTACATGCGC |
| XsHAF1 | CGTGGGAAGCAGGAGAACTT | TCAGCAAGCATTTCTCGCTC |
| XsHAF2 | GGTGAGTGTGTGGCAGTTCT | TGGAAGCGGTGTGGAAACTT |
表2
XsHDACs 和 XsHATs 基因家族成员编码蛋白理化特征
亚家族 Subfamily | 基因名称 Gene name | 基因编号 Gene ID | 基因序列长度 Gene sequence length/bp | 氨基酸数目 Amino acids number | 染色体 Chromosome | 等电点 pI | 疏水性 Hydroph- obicity | 亚细胞定位 Subcellular localization | ||
|---|---|---|---|---|---|---|---|---|---|---|
| 编号No. | 起始位置 Starting | 结束位置 Ending | ||||||||
| RPD3/HDA1 | XsHDA5 | XS13G0000300.1 | 31 469 | 1 346 | 13 | 42 083 | 73 551 | 7.04 | -0.231 | 细胞核 |
| XsHDA6 | XS13G0205600.1 | 6 511 | 715 | 13 | 18 440 192 | 18 446 702 | 5.88 | -0.281 | 叶绿体 | |
| XsHDA8 | XS10G0208600.1 | 4 094 | 378 | 10 | 27 324 779 | 27 328 872 | 5.38 | -0.181 | 细胞骨架 | |
| XsHDA9 | XS10G0189900.1 | 9 672 | 459 | 10 | 25 563 436 | 25 573 107 | 5.16 | -0.343 | 细胞质 | |
| XsHDA14 | XS08G0082900.1 | 1 687 | 175 | 8 | 10 694 904 | 10 696 590 | 5.28 | 0.054 | 细胞质 | |
| XsHDA15 | XS13G0012000.1 | 110 820 | 581 | 13 | 999 640 | 1 010 459 | 6.09 | -0.423 | 细胞核 | |
| XsHDA19a | XS06G0265200.1 | 6 258 | 499 | 6 | 31 591 565 | 31 597 822 | 5.11 | -0.567 | 细胞核 | |
| XsHDA19b | XS06G0266100.1 | 11 068 | 467 | 6 | 31 988 618 | 31 999 685 | 5.79 | -0.397 | 细胞质 | |
| SIR | XsSRT2 | XS01G0117000.1 | 11 080 | 447 | 1 | 13 708 191 | 13 719 270 | 8.17 | -0.159 | 细胞核 |
| XsSRT4 | XS08G0254700.1 | 6 286 | 372 | 8 | 29 422 597 | 29 428 882 | 8.72 | -0.219 | 无 | |
| XsSRT6a | XS01G0117200.1 | 7 465 | 472 | 1 | 1 374 249 | 13 749 961 | 7.88 | 0.107 | 细胞质膜 | |
| XsSRT6b | XS15G0181700.1 | 6 828 | 448 | 15 | 18 691 280 | 18 698 107 | 9.11 | -0.260 | 细胞核 | |
| HD2 | XsHDT1a | XS12G0010700.1 | 4 221 | 326 | 12 | 1 014 407 | 1 018 627 | 4.87 | -1.055 | 细胞核 |
| XsHDT1b | XS10G0185900.1 | 3 539 | 274 | 10 | 25 235 716 | 25 239 254 | 5.3 | -0.821 | 细胞核 | |
| XsHDT3 | XS13G0226100.1 | 4 773 | 608 | 13 | 21 330 954 | 21 335 726 | 5.14 | -0.977 | 细胞核 | |
| GNAT | XsHAG1 | XS01G0275100.1 | 9 344 | 616 | 1 | 28 219 065 | 28 228 408 | 5.99 | -0.603 | 细胞核 |
| XsHAG2 | XS04G0216600.1 | 3 258 | 466 | 4 | 27 534 203 | 27 537 460 | 5.55 | -0.246 | 细胞骨架 | |
| XsHAG3 | XS13G0078200.1 | 5 775 | 1 005 | 13 | 7 261 674 | 7 267 448 | 7.13 | -0.255 | 细胞骨架 | |
| MYST | XsHAM1 | XS07G0161100.1 | 1 674 | 456 | 7 | 14 445 643 | 14 453 353 | 6.99 | -0.613 | 细胞核 |
| XsHAM2 | XS07G0161400.1 | 5 973 | 456 | 7 | 14 513 828 | 14 521 582 | 8.23 | -0.436 | 细胞核 | |
| CBP | XsHAC1 | XS13G0220600.1 | 2 360 | 1 793 | 13 | 20 139 040 | 20 151 359 | 8.36 | -0.678 | 细胞核 |
| TAFII250 | XsHAF1 | XS13G0224500.1 | 9 596 | 1 101 | 13 | 20 139 040 | 20 151 359 | 9.17 | -0.734 | 无 |
| XsHAF2 | XS12G0000500.1 | 5 412 | 1 803 | 12 | 20 139 040 | 20 151 359 | 5.81 | -0.675 | 无 | |
表3
XsHDACs和XsHATs蛋白家族成员二级结构分析
蛋白名称 Protein name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β-转角 β-sheet/% | 不规则卷曲 Random coil/% |
|---|---|---|---|---|
| XsHDA5 | 34.18 | 10.25 | 0 | 55.57 |
| XsHDA6 | 36.22 | 13.43 | 0 | 50.35 |
| XsHDA8 | 37.83 | 15.87 | 0 | 46.30 |
| XsHDA9 | 34.89 | 11.56 | 0 | 53.56 |
| XsHDA14 | 30.29 | 21.14 | 0 | 48.57 |
| XsHDA15 | 37.52 | 11.19 | 0 | 51.29 |
| XsHDA19a | 37.68 | 11.02 | 0 | 51.30 |
| XsHDA19b | 34.69 | 11.19 | 0 | 53.75 |
| XsSRT2 | 30.65 | 11.02 | 0 | 58.17 |
| XsSRT4 | 29.84 | 11.56 | 0 | 59.14 |
| XsSRT6a | 28.18 | 13.35 | 0 | 58.47 |
| XsSRT6b | 29.24 | 9.38 | 0 | 61.38 |
| XsHDT1a | 11.04 | 12.58 | 0 | 76.38 |
| XsHDT1b | 8.76 | 16.79 | 0 | 74.45 |
| XsHDT3 | 9.54 | 13.98 | 0 | 76.48 |
| XsHAG1 | 29.71 | 7.63 | 0 | 62.66 |
| XsHAG2 | 44.42 | 13.09 | 0 | 42.49 |
| XsHAG3 | 46.67 | 12.04 | 0 | 41.29 |
| XsHAM1 | 32.24 | 13.16 | 0 | 54.61 |
| XsHAM2 | 38.28 | 15.91 | 0 | 45.81 |
| XsHAC1 | 26.49 | 5.13 | 0 | 68.38 |
| XsHAF1 | 47.23 | 4.09 | 0 | 48.68 |
| XsHAF2 | 40.82 | 4.83 | 0 | 54.35 |
| [1] | 顾玉红.文冠果体细胞胚胎发生及形态建成机理的研究[D].北京:北京林业大学,2005. |
| GU Y H.Mechanisms of somatic embryogenesis and morphogenesis of Xanthoceras sorbifolia Bunge[D].Beijing:Beijing Forestry University,2005. | |
| [2] | ZHAO N, ZHANG Y, LI Q Q,et al.Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds[J].Plant Physiology and Biochemistry,2015,87:9-16. |
| [3] | XIAO W, WANG Y, ZHANG P,et al.Bioactive barrigenol type triterpenoids from the leaves of Xanthoceras sorbifolia Bunge[J].European Journal of Medicinal Chemistry,2013,60:263-270. |
| [4] | BANNISTER A J, KOUZARIDES T.Regulation of chromatin by histone modifications[J].Cell Research,2011,21(3):381-395. |
| [5] | PANDEY R, MÜLLER A, NAPOLI C A,et al.Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J].Nucleic Acids Research,2002,30(23):5036-5055. |
| [6] | 韩召奋,王秋苹,罗鑫娟.植物组蛋白去乙酰化酶的特性及功能[J].中国生物化学与分子生物学报,2017,33(10):1008-1013. |
| HAN Z F, WANG Q P, LUO X J.Characteristic and function of histone deacetylases in plants[J].Chinese Journal of Biochemistry and Molecular Biology,2017,33(10):1008-1013. | |
| [7] | YU C W, LIU X C, LUO M,et al.HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis [J].Plant Physiology,2011,156(1):173-184. |
| [8] | YU C W, CHANG K Y, WU K Q.Genome-wide analysis of gene regulatory networks of the FVE-HDA6-FLD complex in Arabidopsis [J].Frontiers in Plant Science,2016,7:555. |
| [9] | TANAKA M, KIKUCHI A, KAMADA H,et al.The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination[J].Plant Physiology,2008,146(1):149-161. |
| [10] | ZHOU Y, TAN B, LUO M,et al.HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings[J].The Plant Cell,2013,25(1):134-148. |
| [11] | HU Y N, HAN Z Y, WANG T,et al.Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes[J].Plant Physiology,2022,188(4):2166-2181. |
| [12] | HAN Y T, GEORGII E, PRIEGO-CUBERO S,et al. Arabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1[J].Frontiers in Plant Science,2023,14:1124899. |
| [13] | VALL-LLAURA N, TORRES R, LINDO-GARCÍA V,et al. PbSRT1 and PbSRT2 regulate pear growth and ripening yet displaying a species-specific regulation in comparison to other Rosaceae spp.[J].Plant Science,2021,308:110925. |
| [14] | ZHAO L M, LU J X, ZHANG J X,et al.Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum)[J].Frontiers in Plant Science,2015,5:760. |
| [15] | LEE C Y, GRANT P A.Chapter 1-1-role of histone acetylation and acetyltransferases in gene regulation[M]//MCCULLOUGH S D,DOLINOY D C.Toxicoepigenetics.London:Academic Press,2019:3-30. |
| [16] | BERTRAND C, BERGOUNIOUX C, DOMENICHINI S,et al. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway[J].Journal of Biological Chemistry,2003,278(30):28246-28251. |
| [17] | XIAO J, ZHANG H, XING L J,et al.Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis [J].Journal of Plant Physiology,2013,170(4):444-451. |
| [18] | HAN S K, SONG J D, NOH Y S,et al.Role of plant CBP/p300-like genes in the regulation of flowering time[J].The Plant Journal,2007,49(1):103-114. |
| [19] | DENG W W, LIU C Y, PEI Y X,et al.Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis [J].Plant Physiology,2007,143(4):1660-1668. |
| [20] | LIU X, LUO M, ZHANG W,et al.Histone acetyltransferases in rice (Oryza sativa L.):phylogenetic analysis,subcellular localization and expression[J].BMC Plant Biology,2012,12(1):145. |
| [21] | PAPAEFTHIMIOU D, LIKOTRAFITI E, KAPAZOGLOU A,et al.Epigenetic chromatin modifiers in barley:Ⅲ.Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA[J].Plant Physiology and Biochemistry,2010,48(2/3):98-107. |
| [22] | BERTRAND C, BENHAMED M, LI Y F,et al. Arabidopsis HAF2 gene encoding TATA-binding protein(TBP)- associated factor TAF1,is required to integrate light signals to regulate gene expression and growth[J].Journal of Biological Chemistry,2005,280(2):1465-1473. |
| [23] | LIANG Q, LIU J N, FANG H C,et al.Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn[J].Frontiers in Plant Science,2022,13:991197. |
| [24] | LIU H, YAN X M, WANG X R,et al.Centromere-specific retrotransposons and very-long-chain fatty acid biosynthesis in the genome of yellowhorn (Xanthoceras sorbifolium,Sapindaceae),an oil-producing tree with significant drought resistance[J].Frontiers in Plant Science,2021,12:766389. |
| [25] | ALTSCHUL S F, MADDEN T L, SCHÄFFER A A,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J].Nucleic Acids Research,1997,25(17):3389-3402. |
| [26] | EL-GEBALI S, MISTRY J, BATEMAN A,et al.The Pfam protein families database in 2019[J].Nucleic Acids Research,2019,47(D1):D427-D432. |
| [27] | LU S N, WANG J Y, CHITSAZ F,et al.CDD/SPARCLE:the conserved domain database in 2020[J].Nucleic Acids Research,2020,48(D1):D265-D268. |
| [28] | LETUNIC I, KHEDKAR S, BORK P.SMART:recent updates,new developments and status in 2020[J].Nucleic Acids Research,2021,49(D1):D458-D460. |
| [29] | LI K B.ClustalW-MPI:ClustalW analysis using distributed and parallel computing[J].Bioinformatics,2003,19(12):1585-1856. |
| [30] | KUMAR S, STECHER G, LI M,et al.MEGA X:molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution,2018,35(6):1547-1549. |
| [31] | TAMURA K, PETERSON D, PETERSON N,et al.MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J].Molecular Biology and Evolution,2011,28(10):2731-2739. |
| [32] | BAILEY T L, JOHNSON J, GRANT C E,et al.The MEME Suite[J].Nucleic Acids Research,2015,43(W1):W39-W49. |
| [33] | CHEN C J, CHEN H, ZHANG Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194-1202. |
| [34] | LESCOT M, DÉHAIS P, THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327. |
| [35] | LIANG Q, LI H Y, LI S K,et al.The genome assembly and annotation of yellowhorn(Xanthoceras sorbifolium Bunge)[J].GigaScience,2019,8(6):giz071. |
| [36] | 李晓斐,张舒婷,陈晓慧,等.龙眼HDAC家族成员的全基因组鉴定及表达分析[J].果树学报,2020,37(6):793-807. |
| LI X F, ZHANG S T, CHEN X H,et al.Genome-wide identification and expression analysis of HDAC gene family in Dimocarpus longan Lour[J].Journal of Fruit Science,2020,37(6):793-807. | |
| [37] | 李晓斐,张舒婷,申序,等.龙眼HAT家族的全基因组鉴定及表达模式[J].应用与环境生物学报,2021,27(5):1354-1363. |
| LI X F, ZHANG S T, SHEN X,et al.Genome-wide identification and expression analysis of HAT gene family in longan[J].Chinese Journal of Applied and Environmental Biology,2021,27(5):1354-1363. | |
| [38] | ROSSI V, LOCATELLI S, VAROTTO S,et al.Maize histone deacetylase hda101 is involved in plant development,gene transcription,and sequence-specific modulation of histone modification of genes and repeats[J].The Plant Cell,2007,19(4):1145-1162. |
| [39] | VAROTTO S, LOCATELLI S, CANOVA S,et al.Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development[J].Plant Physiology,2003,133(2):606-617. |
| [40] | HU Y F, QIN F J, HUANG L M,et al.Rice histone deacetylase genes display specific expression patterns and developmental functions[J].Biochemical and Biophysical Research Communications,2009,388(2):266-271. |
| [41] | 赵娜,张媛,王静,等.文冠果种子发育及油脂累积与糖类、蛋白质累积之间的关系研究[J].植物研究,2015,35(1):133-140. |
| ZHAO N, ZHANG Y, WANG J,et al.Seed development,lipid accumulation and its relationship with carbohydrates and protein in Xanthoceras sorbifolia Bunge[J].Bulletin of Botanical Research,2015,35(1):133-140. | |
| [42] | HE M, QIN C X, WANG X,et al.Plant unsaturated fatty acids:biosynthesis and regulation[J].Frontiers in Plant Science,2020,11:390. |
| [43] | CHEN Q S, ZHANG J, LI G.Dynamic epigenetic modifications in plant sugar signal transduction[J].Trends in Plant Science,2022,27(4):379-390. |
| [44] | WEBER H, BORISJUK L, WOBUS U.Molecular physiology of legume seed development[J].Annual Review of Plant Biology,2005,56:253-279. |
| [45] | LI G S, WANG D F, YANG R L,et al.Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(21):7582-7587. |
| [46] | VERDIER J, THOMPSON R D.Transcriptional regulation of storage protein synthesis during dicotyledon seed filling[J].Plant and Cell Physiology,2008,49(9):1263-1271. |
| [1] | 何林林, 吴磊, 任雪松, 司军, 李勤菲, 宋洪元. 滞绿基因SGR研究进展[J]. 植物研究, 2026, 46(1): 1-12. |
| [2] | 春建惠, 董文龙, 屠元超, 刘芳, 徐云剑. 玉米GLP家族基因鉴定及其响应丛枝菌根共生表达[J]. 植物研究, 2025, 45(3): 406-418. |
| [3] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
| [4] | 王孟珂, 田梦妮, 毕泉鑫, 刘肖娟, 于海燕, 王利兵. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选[J]. 植物研究, 2021, 41(6): 957-964. |
| [5] | 朱利利, 庆军, 杜庆鑫, 何凤, 杜红岩. 杜仲脂氧合酶基因家族全基因组鉴定及其表达特性研究[J]. 植物研究, 2019, 39(6): 927-934. |
| [6] | 王家啟, 张曦, 李莉. 白桦HD-Zip基因家族生物信息学及应答盐胁迫分析[J]. 植物研究, 2018, 38(6): 931-938. |
| [7] | 刘慧子;孙丹;于颖;张楠;王超*. 白桦MYB家族基因序列及表达分析[J]. 植物研究, 2016, 36(2): 252-257. |
| [8] | 管清杰1,2;汪振娟1;郑恒1;刘光涛3;柳参奎1. 水稻OsLOL2基因的克隆及过表达拟南芥的抗盐性分析[J]. 植物研究, 2015, 35(2): 259-269. |
| [9] | 赵娜;张媛;王静;刘欣;赵翠格;郭惠红*. 文冠果种子发育及油脂累积与糖类、蛋白质累积之间的关系研究[J]. 植物研究, 2015, 35(1): 133-140. |
| [10] | 吴翔宇;许志茹;曲春浦;李蔚;孙琦;刘关君*. 毛果杨NLP基因家族生物信息学分析与鉴定[J]. 植物研究, 2014, 34(1): 37-43. |
| [11] | 吕雪芹;张敏;王頔;王莉*. 文冠果可孕花与不孕花发育过程的比较研究[J]. 植物研究, 2014, 34(1): 85-94. |
| [12] | 柴春山;芦娟;蔡国军;王子婷. 文冠果人工种群的果实发育与落花落果特性研究[J]. 植物研究, 2012, 32(1): 110-114. |
| [13] | 阴黎明;王力华*;刘波;. 文冠果叶片养分元素含量的动态变化及再吸收特性[J]. 植物研究, 2009, 29(6): 685-691. |
| [14] | 王黎丽;付玉杰;*;张 谡;. 文冠果种子油提取工艺[J]. 植物研究, 2008, 28(4): 509-512. |
| [15] | 付玉杰;张乃静;王黎丽;张 谡;祖元刚*. 超声提取文冠果种仁油及GC-MS成分分析[J]. 植物研究, 2007, 27(5): 622-625. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||