植物研究 ›› 2026, Vol. 46 ›› Issue (1): 131-144.doi: 10.7525/j.issn.1673-5102.2026.01.012
刘禹含1, 李婷婷1, 杨柳1, 李特1, 刘刚1, 王秀伟1,2(
)
收稿日期:2025-07-21
出版日期:2026-01-20
发布日期:2026-01-20
通讯作者:
王秀伟
E-mail:wxgreat@nefu.edu.cn
作者简介:刘禹含(2001—),女,硕士研究生,主要从事树木生理生态学研究。
基金资助:
Yuhan LIU1, Tingting LI1, Liu YANG1, Te LI1, Gang LIU1, Xiuwei WANG1,2(
)
Received:2025-07-21
Online:2026-01-20
Published:2026-01-20
Contact:
Xiuwei WANG
E-mail:wxgreat@nefu.edu.cn
摘要:
为探究不同生活型(乔木、灌木)和气孔分布类型(单面气孔型、双面气孔型)植物气孔特征差异及其与叶资源经济性状的相关关系,该研究于2023年7—8月以东北林业大学校园内常见的22个树种为研究对象,通过相关分析和标准化主轴分析发现:(1)生活型和气孔分布类型都显著影响气孔特征,乔木的气孔密度(DS)显著高于灌木(P<0.05),而气孔开度(AS)较低;单面气孔型植物的DS和气孔相对面积(ASR)显著高于双面气孔型植物(P<0.05);(2)气孔特征之间的关系在不同的生活型和气孔分布类型中存在差异,DS与气孔大小(SS)和ASR呈负相关关系,且仅在乔木和单面气孔型植物中达到显著水平(P<0.05);SS和AS呈正相关关系,且仅在单面气孔型植物中达到显著水平(P<0.05);(3)气孔特征与其他叶资源经济性状关系紧密,DS和ASR都与比叶面积(ASL)和叶片氮含量(NL)负相关,与干物质含量(CLDM)正相关(P<0.05),AS与NL负相关。叶片性状间的协同关系在乔木和单面气孔型植物中更加稳定,而在灌木和双面气孔型植物中更趋向于独立发展。研究结果有助于进一步了解不同类别植物的气孔发育策略。
中图分类号:
刘禹含, 李婷婷, 杨柳, 李特, 刘刚, 王秀伟. 不同生活型和气孔分布类型植物叶片气孔特征差异及其与叶资源经济性状关联[J]. 植物研究, 2026, 46(1): 131-144.
Yuhan LIU, Tingting LI, Liu YANG, Te LI, Gang LIU, Xiuwei WANG. Differences in Leaf Stomatal Traits across Plant Life Forms and Stomatal Distribution Types and Their Associations with Leaf Economic Traits[J]. Bulletin of Botanical Research, 2026, 46(1): 131-144.
表1
22种常见树木概况
| 9.2~15.0 | ||||||
| 14.5~19.0 | ||||||
| 20.2~25.6 | ||||||
| 9.6~18.5 | ||||||
| 32.3~37.2 | ||||||
| 6.1~8.2 | ||||||
| 3.3~5.7 | ||||||
| 9.1~18.3 | ||||||
| 12.1~16.8 | ||||||
| 9.1~10.9 | ||||||
| 12.3~22.1 | ||||||
| 22.3~28.6 | ||||||
| 50.5~55.5 | ||||||
| 28.5~33.5 | ||||||
| 3.6~9.0 | ||||||
表2
22种常见树种叶片气孔特征
统计指标 Statistical index | 上表皮 Adaxial epidermis | 下表皮 Abaxial epidermis | ||||||
|---|---|---|---|---|---|---|---|---|
气孔密度 DS/(No.·mm-2) | 气孔大小 SS/μm2 | 气孔相对面积ASR/% | 气孔开度 AS/% | 气孔密度 DS/(No.·mm-2) | 气孔大小 SS/μm2 | 气孔相对面积 ASR/% | 气孔开度 AS/% | |
样本量 Sample size | 24 | 24 | 24 | 24 | 109 | 109 | 109 | 109 |
平均值 Mean | 38.06 | 342.87 | 1.22 | 48.53 | 276.75 | 347.95 | 7.41 | 46.14 |
最小值 Minimum | 10.11 | 248.82 | 0.35 | 38.49 | 68.82 | 126.50 | 2.11 | 24.30 |
最大值 Maximum | 97.69 | 605.41 | 2.47 | 55.85 | 1 057.21 | 1 386.50 | 22.49 | 60.21 |
标准误差 Standard error | 4.67 | 18.56 | 0.12 | 0.81 | 21.69 | 21.47 | 0.40 | 0.72 |
偏度 Skewness | 1.18 | 1.27 | 0.61 | -0.74 | 1.70 | 2.55 | 1.50 | -0.32 |
峰度 Kurtosis | 0.63 | 1.52 | -0.77 | 0.76 | 2.07 | 8.13 | 2.39 | -0.26 |
变异系数 Coefficient of variation | 0.60 | 0.27 | 0.50 | 0.08 | 0.82 | 0.64 | 0.57 | 0.16 |
表3
生活型与气孔分布类型对气孔特征影响的双因素方差分析结果
性状 Trait | 效应 Effect | 自由度 df | F | P |
|---|---|---|---|---|
气孔密度 DS | 生活型 Life form | 1 | 7.91 | ** |
| 气孔分布类型 Stomatal distribution type | 1 | 2.31 | 0.13 | |
| 气孔分布类型×生活型 Stomatal distribution type×Life form | 1 | 5.44 | * | |
气孔大小 SS | 生活型 Life form | 1 | 3.40 | 0.07 |
| 气孔分布类型 Stomatal distribution type | 1 | 0.40 | 0.53 | |
| 气孔分布类型×生活型 Stomatal distribution type×Life form | 1 | 0.01 | 0.93 | |
气孔相对面积 ASR | 生活型 Life form | 1 | 3.50 | 0.07 |
| 气孔分布类型 Stomatal distribution type | 1 | 7.50 | ** | |
| 气孔分布类型×生活型 Stomatal distribution type×Life form | 1 | 10.70 | ** | |
气孔开度 AS | 生活型 Life form | 1 | 5.86 | * |
| 气孔分布类型 Stomatal distribution type | 1 | 3.95 | * | |
| 气孔分布类型×生活型 Stomatal distribution type×Life form | 1 | 0.23 | 0.63 |
表4
气孔特征与叶资源经济性状之间的Pearson相关系数
特征 Trait | 叶资源经济性状 Leaf economic traits | 气孔特征 Stomatal traits | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
比叶面积 ASL | 叶面积 AL | 叶片厚度 TL | 叶绿素 含量 Chl | 叶片氮 含量 NL | 干物质 含量 CLDM | 气孔密度 DS | 气孔大小 SS | 气孔相 对面积 ASR | 气孔开度 AS | |
| 气孔密度DS | -0.31** | 0.03 | -0.04 | -0.03 | -0.19* | 0.51** | 1 | |||
| 气孔大小SS | -0.03 | 0.73 | -0.01 | -0.14 | -0.18 | -0.13 | -0.44** | 1 | ||
| 气孔相对面积ASR | -0.37** | 0.13 | 0.05 | -0.15 | -0.36** | 0.42** | 0.77** | 0.12 | 1 | |
| 气孔开度AS | -0.18 | -0.04 | 0.07 | 0.01 | -0.21* | 0.07 | -0.20* | 0.40** | 0.10 | 1 |
| [1] | RAVEN J A.Selection pressures on stomatal evolution[J].New Phytologist,2002,153(3):371-386. |
| [2] | MCADAM S A M, BRODRIBB T J.Linking turgor with ABA biosynthesis:implications for stomatal responses to vapor pressure deficit across land plants[J].Plant Physiology,2016,171(3):2008-2016. |
| [3] | MARTIN C, GLOVER B J.Functional aspects of cell patterning in aerial epidermis[J].Current Opinion in Plant Biology,2007,10(1):70-82. |
| [4] | LIU C C, SACK L, LI Y,et al.Relationships of stomatal morphology to the environment across plant communities[J].Nature Communications,2023,14(1):6629. |
| [5] | MIYASHITA K, TANAKAMARU S, MAITANI T,et al.Recovery responses of photosynthesis,transpiration,and stomatal conductance in kidney bean following drought stress[J].Environmental and Experimental Botany,2005,53(2):205-214. |
| [6] | CASSON S A, HETHERINGTON A M.Environmental regulation of stomatal development[J].Current Opinion in Plant Biology,2010,13(1):90-95. |
| [7] | HAWORTH M, ELLIOTT-KINGSTON C, MCELWAIN J C.Stomatal control as a driver of plant evolution[J].Journal of Experimental Botany,2011,62(8):2419-2423. |
| [8] | HETHERINGTON A M, WOODWARD F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908. |
| [9] | FRANKS P J, BEERLING D J.Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(25):10343-10347. |
| [10] | SACK L, BUCKLEY T N.The developmental basis of stomatal density and flux[J].Plant Physiology,2016,171(4):2358-2363. |
| [11] | PATHOUMTHONG P, ZHANG Z, ROY S J,et al.Rapid non-destructive method to phenotype stomatal traits[J].Plant Methods,2023,19(1):36. |
| [12] | LI Q, HOU J H, HE N P,et al.Changes in leaf stomatal traits of different aged temperate forest stands[J].Journal of Forestry Research,2021,32(3):927-936. |
| [13] | BUCHER S F, KÖNIG P, MENZEL A,et al.Traits and climate are associated with first flowering day in herbaceous species along elevational gradients[J].Ecology and Evolution,2018,8(2):1147-1158. |
| [14] | DRAKE P L, FROEND R H, FRANKS P J.Smaller,faster stomata:scaling of stomatal size,rate of response,and stomatal conductance[J].Journal of Experimental Botany,2013,64(2):495-505. |
| [15] | 倪榕蔚,甘玉婷,杨桂梅,等.热岛效应下亚热带城市植被叶气孔权衡特征及其与叶功能性状的关系[J].生态学报,2023,43(13):5336-5346. |
| NI R W, GAN Y T, YANG G M,et al.Trade-off characteristics of stomata of subtropical urban vegetation and its relationship with leaf functional traits under heat island effect[J].Acta Ecologica Sinica,2023,43(13):5336-5346. | |
| [16] | 杨克彤,常海龙,陈国鹏,等.兰州市主要绿化植物气孔性状特征[J].植物生态学报,2021,45(2):187-196. |
| YANG K T, CHANG H L, CHEN G P,et al.Stomatal traits of main greening plant species in Lanzhou[J].Chinese Journal of Plant Ecology,2021,45(2):187-196. | |
| [17] | DRAKE P L, DE BOER H J, SCHYMANSKI S J,et al.Two sides to every leaf:water and CO2 transport in hypostomatous and amphistomatous leaves[J].New Phytologist,2019,222(3):1179-1187. |
| [18] | MUIR C D.Making pore choices:repeated regime shifts in stomatal ratio[J].Proceedings of the Royal Society B:Biological Sciences,2015,282(1813):20151498. |
| [19] | BUCKLEY T N, JOHN G P, SCOFFONI C,et al.How does leaf anatomy influence water transport outside the xylem?[J].Plant Physiology,2015,168(4):1616-1635. |
| [20] | 王青,刘聪聪,何念鹏,等.内蒙古高原植物气孔性状的空间变异及其适应机制[J].生态学报,2023,43(9):3766-3777. |
| WANG Q, LIU C C, HE N P,et al.Spatial variations and adaptive mechanisms of plant stomatal traits on the Inner Mongolian Plateau[J].Acta Ecologica Sinica,2023,43(9):3766-3777. | |
| [21] | LI L, MCCORMACK M L, MA C G,et al.Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J].Ecology Letters,2015,18(9):899-906. |
| [22] | WRIGHT I J, REICH P B, WESTOBY M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428(6985):821-827. |
| [23] | BUCHER S F, AUERSWALD K, GRÜN-WENZEL C,et al.Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate[J].Flora,2017,229:107-115. |
| [24] | YIN Q L, WANG L, LEI M L,et al.The relationships between leaf economics and hydraulic traits of woody plants depend on water availability[J].Science of The Total Environment,2018,621:245-252. |
| [25] | LIU C C, LI Y, XU L,et al.Variation in leaf morphological,stomatal,and anatomical traits and their relationships in temperate and subtropical forests[J].Scientific Reports,2019,9(1):5803. |
| [26] | ZHANG S B, GUAN Z J, SUN M,et al.Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum,Orchidaceae[J].PLoS One,2012,7(6):e40080. |
| [27] | TRICKER P J, TREWIN H, KULL O,et al.Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2 [J].Oecologia,2005,143(4):652-660. |
| [28] | 王瑞丽,于贵瑞,何念鹏,等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J].生态学报,2016,36(8):2175-2184. |
| WANG R L, YU G R, HE N P,et al.Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J].Acta Ecologica Sinica,2016,36(8):2175-2184. | |
| [29] | 车应弟,刘旻霞,李俐蓉,等.基于功能性状及系统发育的亚高寒草甸群落构建[J].植物生态学报.2017,41(11):1157-1167. |
| CHE Y D, LIU M X, LI L R,et al.Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny[J].Chinese Journal of Plant Ecology,2017,41(11):1157-1167. | |
| [30] | ARNON D I.Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta Vulgaris [J].Plant Physiology,1949,24(1):1-15. |
| [31] | 张韫.土壤·水·植物理化分析教程[M].北京:中国林业出版社,2011. |
| ZHANG Y.Soil,water and plant physicochemical analysis course[M].Beijing:China Forestry Publishing House,2011. | |
| [32] | XIONG D L, FLEXAS J.From one side to two sides:the effects of stomatal distribution on photosynthesis[J].New Phytologist,2020,228(6):1754-1766. |
| [33] | MOTT K A, GIBSON A C, O'LEARY J W.The adaptive significance of amphistomatic leaves[J].Plant,Cell & Environment,1982,5(6):455-460. |
| [34] | HARRISON E L, CUBAS L A, GRAY J E,et al.The influence of stomatal morphology and distribution on photosynthetic gas exchange[J].The Plant Journal,2020,101(4):768-779. |
| [35] | PARKHURST D F.The adaptive significance of stomatal occurrence on one or both surfaces of leaves[J].Journal of Ecology,1978,66(2):367-383. |
| [36] | PATHARE V S, KOTEYEVA N, COUSINS A B.Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses[J].New Phytologist,2020,225(1):169-182. |
| [37] | 吴冰洁,刘玉军,姜闯道,等.叶片生长进程中气孔发育对叶温调节的影响[J].植物生理学报,2015(1):119-126. |
| WU B J, LIU Y J, JIANG C D,et al.Effects of stomatal development on leaf temperature during leaf expansion[J].Plant Physiology Journal,2015(1):119-126. | |
| [38] | BRODRIBB T J, JORDAN G J, CARPENTER R J.Unified changes in cell size permit coordinated leaf evolution[J].New Phytologist,2013,199(2):559-570. |
| [39] | 杨克彤,陈国鹏,李广,等.兰州市典型绿化树种叶性状间的权衡关系[J].生态学杂志,2020,39(5):1518-1526. |
| YANG K T, CHEN G P, LI G,et al.Trade-off among leaf traits of typical greening tree species in Lanzhou[J].Chinese Journal of Ecology,2020,39(5):1518-1526. | |
| [40] | SMITH W K, VOGELMANN T C, DELUCIA E H,et al.Leaf form and photosynthesis[J].BioScience,1997,47(11):785-793. |
| [41] | FAJARDO A, SIEFERT A.Phenological variation of leaf functional traits within species[J].Oecologia,2016, 180(4):951-959. |
| [42] | XIE J B, WANG Z Y, LI Y.Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients[J].New Phytologist,2022,235(3):907-922. |
| [43] | LORANGER J, SHIPLEY B.Interspecific covariation between stomatal density and other functional leaf traits in a local flora[J].Botany,2010,88(1):30-38. |
| [44] | BEERLING D J, KELLY C K.Evolutionary comparative analyses of the relationship between leaf structure and function[J].New Phytologist,1996,134(1):35-51. |
| [45] | LUO J X, ZANG R G, LI C Y.Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China[J].Forest Ecology and Management,2006,221(1/2/3):285-290. |
| [46] | FRANKS P J, FARQUHAR G D.The mechanical diversity of stomata and its significance in gas-exchange control[J].Plant Physiology,2007,143(1):78-87. |
| [47] | SJÖMAN H, MORGENROTH J, SJÖMAN J D,et al.Diversification of the urban forest:can we afford to exclude exotic tree species?[J].Urban Forestry & Urban Greening,2016,18:237-241. |
| [1] | 杨昕瑜, 张硕, 张曦文, 郑青山, 苏日力格, 谷加存. 白音敖包国家级自然保护区典型乔、灌木叶、枝及细根生态化学计量特征[J]. 植物研究, 2025, 45(5): 795-806. |
| [2] | 赵晶, 汪溪远. 古尔班通古特沙漠南缘3种生活型草本植物生物量分配及相关生长关系[J]. 植物研究, 2017, 37(2): 304-311. |
| [3] | 张斯斯;肖宜安;*. 中国外来入侵植物生活型与性系统多样性[J]. 植物研究, 2013, 33(3): 351-359. |
| [4] | 于顺利;方伟伟;泽仁旺姆*;尼珍;张小凤. 西藏及其东南地区被子植物与其不同生活型的果实类型分析[J]. 植物研究, 2013, 33(2): 154-158. |
| [5] | 黎有有;唐源江;李菁;周毅;黄衡宇*. 蛇足石杉的形态学及不同光照处理下气孔特征的研究[J]. 植物研究, 2009, 29(4): 411-416. |
| [6] | 段喜华, 孙立夫, 马书荣, 祖元刚. 不同海拔高度泡沙参叶片形态研究[J]. 植物研究, 2003, 23(3): 334-336. |
| [7] | 王国宏, 周广胜. 甘肃木本植物区系生活型和果实类型构成式样与水热因子的相关分析[J]. 植物研究, 2001, 21(3): 448-455. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||