植物研究 ›› 2024, Vol. 44 ›› Issue (5): 711-720.doi: 10.7525/j.issn.1673-5102.2024.05.008
• 生理与生态 • 上一篇
收稿日期:
2024-04-02
出版日期:
2024-09-20
发布日期:
2024-09-24
通讯作者:
张鹏
E-mail:zhangpeng@nefu.edu.cn
作者简介:
刘婷(1995—),女,硕士研究生,主要从事森林培育研究。
基金资助:
Ting LIU, Mingyue LI, Meiru ZHU, Hao XIN, Bowen DONG, Peng ZHANG()
Received:
2024-04-02
Online:
2024-09-20
Published:
2024-09-24
Contact:
Peng ZHANG
E-mail:zhangpeng@nefu.edu.cn
摘要:
以18个水曲柳无性系种子为研究材料,经过不同层积处理后,在适宜温度下比较无性系种子萌发表现,同时分析其萌发表现与种子胚生长变化之间的关系。结果表明:经不同层积处理后,不同水曲柳无性系种子休眠程度存在差异。1、2和6号无性系种子休眠程度较浅,经较短时间(共18周)变温层积处理可解除休眠,其中2、6号种子发芽率达75%以上;13、14、15、16号无性系种子通过延长2周低温层积时间(共20周)可解除休眠;4、8、11和12号无性系种子通过延长2周暖温层积时间(共20周)可解除休眠;5和18号无性系种子休眠程度较深,需同时延长暖温和低温层积时间(共22周)才能解除休眠;3、7、9、10、17号无性系种子延长2周层积时间(共20周)可解除种子休眠,其中延长暖温或低温层积时间对种子休眠的影响差异不显著。在层积处理过程,不同无性系种子胚长、胚率、胚质量比的变化规律不同,6、7、11号等无性系种子相对延长2周低温层积时间有利于胚生长,2、5、17号等无性系种子相对延长2周暖温层积时间有利于胚生长,但通过层积过程中种子胚生长变化情况并不能准确判断不同无性系种子休眠程度上的差异,应通过种子的萌发表现来判断不同无性系种子休眠差异。研究结果可为生产实践中选择种子休眠较浅的无性系母树采种育苗提供参考依据。
中图分类号:
刘婷, 李明月, 朱美如, 辛昊, 董博文, 张鹏. 不同水曲柳无性系种子休眠差异[J]. 植物研究, 2024, 44(5): 711-720.
Ting LIU, Mingyue LI, Meiru ZHU, Hao XIN, Bowen DONG, Peng ZHANG. Differences in Seed Dormancy Among Different Clones of Fraxinus mandshurica[J]. Bulletin of Botanical Research, 2024, 44(5): 711-720.
表1
水曲柳种子层积时间处理试验设计
处理 Treatment | 暖温层积时长 Warm temperature stratification time/week | 低温层积时长 Cold temperature Stratification time/week | 总时长 Total duration/week | 描述 Description |
---|---|---|---|---|
S1 | 10 | 8 | 18 | 较短时间层积处理 Short-time stratification treatment |
S2 | 10 | 10 | 20 | 相对延长低温时间的中等时间层积处理 Medium-time stratification treatment with extension at time of cold temperature treatment |
S3 | 12 | 8 | 20 | 相对延长暖温时间的中等时间层积处理 Medium-time stratification treatment with extension at time of warm temperature treatment |
S4 | 12 | 10 | 22 | 较长时间层积处理 Long-time stratification treatment |
表2
不同无性系和不同层积时间对水曲柳种子胚的发育和发芽能力影响方差分析
变异来源 Source of variation | 发芽率 Germination rate | 发芽指数 Germination index | 发芽时间 Germination time | 胚长 Embryo length | 胚率 Ratio of embryo length to kernel length | 胚质量比 Ratio of embryo dry weight to kernel dry weight |
---|---|---|---|---|---|---|
无性系 Clones | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
层积时间 Stratification time | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
无性系×层积时间 Clones×Stratification time | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
表3
不同层积处理下不同水曲柳无性系种子发芽率差异
无性系 Clones | 发芽率 Germination rate/% | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
1 | 56.25±6.33Abcd | 61.25±9.44Adef | 42.50±5.95Ag | 59.50±3.71Agh |
2 | 76.00±4.32Aa | 70.00±3.54Abcde | 77.50±4.78Aab | 80.00±4.56Aabcd |
3 | 60.00±3.65Babc | 68.75±4.27Acde | 67.50±4.79Aabcdef | 77.75±1.11Abcde |
4 | 19.75±8.70Bfg | 32.50±2.50Bg | 56.25±7.11Acdefg | 68.50±1.26Adefgh |
5 | 39.25±11.00Bdef | 43.75±3.15Bfg | 63.75±2.40Bbcdef | 73.75±2.43Abcdef |
6 | 75.00±3.79Aab | 78.50±1.71Aabcd | 71.50±1.76Aabcd | 73.75±2.75Abcdef |
7 | 13.75±4.16Bg | 45.25±7.36Afg | 53.75±9.66Adefg | 57.50±4.79Ah |
8 | 38.75±8.54Cdef | 55.00±6.12BCef | 73.75±6.56ABabc | 81.25±2.78Aabc |
9 | 36.00±5.16Bef | 56.25±2.39Aef | 51.25±4.27Aefg | 63.75±3.75Afgh |
10 | 33.00±6.61Bfg | 55.00±9.35Aef | 52.50±5.20ABefg | 66.00±2.61Aefgh |
11 | 31.25±2.52Cfg | 46.25±4.73Bfg | 68.75±4.27Aabcde | 77.50±3.62Abcde |
12 | 54.50±6.81Ccde | 68.75±8.00BCcde | 82.50±4.33ABa | 90.50±3.97Aa |
13 | 73.25±1.92Babc | 91.25±3.15Aa | 61.25±4.27Cbcdef | 81.75±3.90ABab |
14 | 66.00±6.63Babc | 81.50±3.89Aabcd | 42.50±3.23Cg | 69.00±4.20ABcdefgh |
15 | 38.25±3.46Cdef | 73.75±3.15Aabcde | 52.50±4.33Befg | 71.25±4.33Abcdefg |
16 | 37.00±3.42Cdef | 87.50±2.50Aabc | 61.25±5.15Bbcdef | 79.00±4.95Aabcd |
17 | 28.25±9.24Bfg | 60.00±1.20Aef | 56.25±7.18Acdefg | 75.50±5.38Abcde |
18 | 36.25±3.65Bef | 57.50±10.90ABef | 50.00±7.07ABfg | 72.75±4.40Abcdef |
表4
不同层积处理下不同水曲柳无性系种子发芽指数差异
无性系 Clones | 发芽指数 Germination index | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
1 | 2.98±0.73Aabcd | 3.38±0.60Aabcd | 0.66±0.12Bf | 0.74±0.09Bi |
2 | 3.88±0.62Aab | 2.96±0.37Abcde | 1.64±0.27Bcde | 3.20±0.25Aabc |
3 | 2.25±0.23Bcdef | 3.25±0.36Abcd | 1.53±0.04Bcde | 1.62±0.20Bfghi |
4 | 0.62±0.36Ahi | 1.18±0.31Ag | 1.19±0.12Aef | 1.03±0.13Ahi |
5 | 1.39±0.46Afhi | 1.15±0.23Ag | 1.28±0.10Aef | 1.83±0.28Aefgh |
6 | 2.61±0.32Abcde | 2.85±0.56Abcde | 0.69±0.12Bf | 1.33±0.24Bghi |
7 | 0.32±0.08Chi | 1.60±0.55Befg | 2.11±0.36ABcd | 2.99±0.38Aabcd |
8 | 1.78±0.30Bdef | 2.69±0.50ABcdef | 3.30±0.51Aa | 3.48±0.24Aab |
9 | 1.42±0.27Bfhi | 2.71±0.33Acdef | 1.64±0.32Bcde | 3.01±0.32Aabcd |
10 | 1.16±0.25Bhi | 2.10±0.32Adefg | 1.10±0.13Bef | 0.98±0.09Bhi |
11 | 0.78±0.17Bhi | 1.31±0.33ABfg | 2.15±0.27Abcd | 1.58±0.40ABghi |
12 | 2.84±0.57ABabcde | 1.50±0.26Cefg | 2.18±0.10BCbc | 3.76±0.27Aa |
13 | 4.06±0.29Ba | 5.52±0.40Aa | 2.78±0.12Bab | 2.66±0.46Bbcde |
14 | 3.15±0.46Aabc | 4.09±0.96Aabc | 1.10±0.07Bef | 2.44±0.47ABcdef |
15 | 2.61±0.66Bbcde | 4.26±0.44Aab | 1.46±0.16Bde | 2.13±0.28Bdefg |
16 | 1.63±0.29Befhi | 2.58±0.04Adefg | 1.15±0.09Bef | 1.61±0.28Bfghi |
17 | 0.81±0.21Ahi | 1.23±0.10Afg | 1.13±0.25Aef | 1.27±0.10Aghi |
18 | 1.42±0.14BCfhi | 2.30±0.60ABfg | 1.23±0.12Cef | 2.50±0.14Acdef |
表5
不同层积处理下不同水曲柳无性系种子平均发芽时间差异
无性系 Clones | 发芽时间 Germination time/d | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
1 | 7.22±0.61Cde | 5.89±0.24Cf | 14.26±0.87Aa | 9.44±0.82Bbcd |
2 | 8.77±0.20Bcde | 11.62±1.18Aab | 11.41±0.58Abcd | 6.52±0.29Cfgh |
3 | 10.46±1.10Abcde | 7.01±0.11Bef | 10.21±0.88Acdefg | 7.72±0.43Bdefg |
4 | 14.43±3.57Aab | 9.73±0.71Abcd | 12.21±0.42Abc | 12.89±0.43Aa |
5 | 13.24±1.72Aabc | 11.18±0.99Aabc | 11.22±0.59Abcde | 9.47±0.79Abcd |
6 | 10.71±0.58Babcde | 9.14±0.58BCcde | 14.18±0.63Aa | 8.74±0.37Ccde |
7 | 11.94±2.31Aabcd | 8.25±0.91Ade | 6.62±0.75Bi | 5.57±0.57Bgh |
8 | 7.08±0.79ABe | 8.63±1.36Ade | 6.68±0.26ABi | 4.81±0.37Bh |
9 | 8.80±1.21ABcde | 8.92±0.52ABcde | 9.10±0.85Afgh | 5.81±0.44Bgh |
10 | 9.61±0.60ABcde | 8.25±0.63Bde | 11.00±0.64Abcdef | 9.36±1.22ABbcd |
11 | 15.17±1.85Aa | 12.58±0.93Aa | 8.11±0.55Bghi | 6.44±1.07Bfgh |
12 | 7.41±0.88Bde | 11.21±0.33Aabc | 8.92±0.36Bfgh | 5.31±0.51Ch |
13 | 6.40±0.74Ae | 4.47±0.23Bf | 7.29±0.46Ahi | 6.96±0.38Aefgh |
14 | 7.40±0.22ABde | 6.83±0.37Bef | 8.53±0.54Aghi | 5.18±0.68Ch |
15 | 6.66±1.08Ae | 7.07±0.77Aef | 9.22±0.89Aefgh | 8.06±0.57Adef |
16 | 9.40±1.56Acde | 9.68±0.48Abcd | 11.71±0.27Abcd | 10.21±0.81Abc |
17 | 8.59±0.92Bcde | 11.04±0.17ABabc | 12.85±0.95Aab | 11.03±0.74ABab |
18 | 9.39±1.20Acde | 9.50±0.63Abcd | 9.74±0.69Adefg | 6.53±0.61Bfgh |
表6
经S1层积处理-未经层积处理不同水曲柳无性系种子胚发育状态差值分析
无性系 Clones | 胚长 Embryo length/mm | 胚率 Ratio of embryo length to kernel length/% | 胚质量比 Ratio of embryo dry weight to kernel dry weight/% |
---|---|---|---|
1 | 0.36±0.15fg | 0.97±0.35e | 3.92±1.31bcdef |
2 | 1.43±0.36defg | 4.99±0.71bcde | 5.74±0.45abcde |
3 | 1.35±0.58defg | 3.10±2.08cde | 6.97±1.50abc |
4 | 1.17±0.57defg | 6.25±4.10bcde | 3.50±0.68cdef |
5 | 1.87±0.29de | 6.50±3.74bcde | 5.04±1.31bcdef |
6 | 1.36±0.29defg | 4.76±1.92bcde | 2.95±3.25cdef |
7 | 2.04±0.44d | 5.71±5.45bcde | 1.22±1.39f |
8 | 1.68±0.07de | 4.62±1.48bcde | 7.62±0.62ab |
9 | 2.51±0.54bc | 11.02±1.46bcd | 4.66±0.81bcdef |
10 | 1.85±0.18de | 5.63±2.47bcde | 2.80±1.26def |
11 | 0.18±0.45g | 1.00±0.34e | 3.23±0.33cdef |
12 | 2.00±0.40d | 8.13±3.80bcde | 3.33±0.92cdef |
13 | 3.77±0.30ab | 16.10±0.27a | 8.20±0.20a |
14 | 4.01±0.27a | 16.57±2.80a | 1.83±0.41ef |
15 | 2.40±0.15cd | 9.44±0.45bcde | 5.30±0.85bcdef |
16 | 3.58±0.94abc | 12.88±5.68ab | 6.30±0.89abcd |
17 | 0.45±0.62efg | 2.81±1.60de | 4.66±1.14bcdef |
18 | 1.67±0.24de | 12.47±1.99bc | 5.69±0.85abcde |
表7
不同层积处理下不同水曲柳无性系种子胚率差值分析
无性系 Clones | 胚率 Ratio of embryo length to kernel length/% | ||
---|---|---|---|
S2-S1 | S3-S1 | S4-S1 | |
1 | 23.92±4.90Aabc | 19.38±4.65Aabc | 23.72±3.45Aab |
2 | 17.68±4.03Aabcde | 20.83±3.96Aab | 22.31±4.90Aabc |
3 | 25.43±2.55Aa | 22.58±3.76Aa | 25.43±4.36Aa |
4 | 3.77±1.77Cf | 12.79±0.45Babcdef | 17.89±1.07ABabcde |
5 | 9.49±1.96Bdef | 18.28±4.63Aabcd | 18.66±0.94Aabcde |
6 | 17.83±3.62Aabcde | 3.68±2.13Bf | 10.21±4.55ABbcde |
7 | 11.31±2.87Acdef | 7.80±1.18Bcdef | 12.27±2.72Aabcde |
8 | 13.78±3.40Abcdef | 16.18±1.86Aabcdef | 17.57±0.38Aabcde |
9 | 11.87±5.32Acdef | 16.86±2.75Aabcde | 14.33±7.06Aabcde |
10 | 22.01±2.68Aabc | 19.42±4.75Aabc | 21.60±0.81Aabcd |
11 | 11.34±1.50Acdef | 4.17±1.20Bf | 15.61±4.91Aabcde |
12 | 5.83±4.02Af | 7.99±4.18Acdef | 8.99±0.78Abcde |
13 | 10.36±0.74Acdef | 4.44±1.75Bef | 5.76±1.62ABe |
14 | 9.53±2.74Adef | 5.73±1.33Adef | 8.54±1.02Acde |
15 | 14.14±3.04Aabcdef | 9.04±3.89Abcdef | 19.67±2.33Aabcde |
16 | 19.85±2.06Aabcde | 3.62±1.54Bf | 17.01±2.45Aabcde |
17 | 2.85±1.96Bf | 6.31±2.27Adef | 7.07±1.12Ade |
18 | 7.13±2.63ABef | 3.43±2.23Bf | 12.92±2.72Aabcde |
表8
不同层积处理下不同水曲柳无性系种子胚质量比差值分析
无性系 Clones | 胚质量比 Ratio of embryo dry weight to kernel dry weight/% | ||
---|---|---|---|
S2-S1 | S3-S1 | S4-S1 | |
1 | 1.44±0.64Aab | 3.30±1.63Aabc | 5.14±1.31Aabc |
2 | 1.42±0.71Bab | 5.32±1.14Aab | 6.09±0.74Aab |
3 | 2.42±1.52Aab | 2.92±2.57Aabc | 3.59±2.29Aabc |
4 | 4.42±2.32Aab | 3.02±1.06Aabc | 5.65±0.43Aabc |
5 | 1.39±0.62Aab | 0.72±0.47Ac | 2.55±1.55Aabc |
6 | 5.91±2.16Aa | 3.44±1.79Babc | 7.78±3.23Aa |
7 | 4.00±2.08Aab | 3.33±0.88Aabc | 2.67±0.33Aabc |
8 | 0.70±0.60Ab | 0.77±0.62Ac | 0.43±0.45Ac |
9 | 0.71±0.65Ab | 2.01±1.16Abc | 3.33±1.33Aabc |
10 | 1.80±0.95Aab | 1.17±0.44Abc | 3.83±1.65Aabc |
11 | 3.20±0.99Aab | 3.10±1.36Aabc | 4.43±1.09Aabc |
12 | 4.67±0.33ABab | 2.47±0.87Babc | 6.07±1.31Aab |
13 | 2.01±1.16Aab | 1.47±0.68Abc | 1.20±0.81Abc |
14 | 3.10±0.58Aab | 0.27±0.22Bc | 4.43±1.78ABabc |
15 | 4.01±1.01Aab | 6.57±0.90Aa | 7.17±0.83Aa |
16 | 1.33±0.67Aab | 0.21±0.46Ac | 2.53±1.30Aabc |
17 | 2.67±1.45Aab | 0.83±0.73Ac | 1.27±2.15Abc |
18 | 3.00±0.25ABab | 1.01±0.45Bc | 4.51±1.26Aabc |
1 | LENNON J T, DEN HOLLANDER F, WILKE-BERENGUER M,et al.Principles of seed banks and the emergence of complexity from dormancy[J].Nature Communications,2021,12(1):4807. |
2 | 张鹏.不同发育阶段水曲柳种子的休眠与萌发生理[D].哈尔滨:东北林业大学,2008. |
ZHANG P.The dormancy and germination physiology of Fraxinus mandshurica seeds in different development stage[D].Harbin:Northeast Forestry University,2008. | |
3 | FINCH-SAVAGE W E, CLAY H A.The influence of embryo restraint during dormancy loss and germination of Fraxinus excelsior seeds[J].Basic and Applied Aspects of Seed Biology,1997,30(6):245-253. |
4 | VILLIERS T A, WAREING P F.Dormancy in fruits of Fraxinus excelsior L.[J].Journal of Experimental Botany,1964,15(2):359-367. |
5 | 孙彬,王芳,杨雨春,等.水曲柳研究进展[J].中国农学通报,2022,38(29):74-79. |
SUN B, WANG F, YANG Y C,et al.Research progress of Fraxinus mandshurica [J].Chinese Agricultural Science Bulletin,2022,38(29):74-79. | |
6 | 李莉.我国水曲柳遗传育种研究进展[J].辽宁林业科技,2014,41(2):52-54. |
LI L.Research progress on genetic breeding of Fraxinus mandshurica in China[J].Liaoning Forestry Science and Technology,2014,41(2):52-54. | |
7 | 凌世瑜,董愚得.水曲柳种子休眠生理的研究[J].林业科学,1983,19(4):349-359. |
LING S Y, DONG Y D.Study on the dormancy physiology of Fraxinus mandshurica seeds[J].Scientia Silvae Sinicae,1983,19(4):349-359. | |
8 | 赵玉慧,李森.解除水曲柳种子休眠方法的研究[J].林业科技,1989,18(2):3-4. |
ZHAO Y H, LI S.Research on the method of relieving the dormancy of Fraxinus mandshurica seeds[J].Forestry Science & Technology,1989,18(2):3-4. | |
9 | 栾柯权.水曲柳亲本无性系与子代生长性状变异研究[D].哈尔滨:东北林业大学,2019. |
LUAN K Q.Variation analysis of growth traits of Fraxinus mandshurica clones and seedlings[D].Harbin:Northeast Forestry University,2019. | |
10 | 王芳,孙彬,杨雨春,等.水曲柳半同胞家系变异分析与选择[J].中南林业科技大学学报,2023,43(2):144-154. |
WANG F, SUN B, YANG Y C,et al.Variation analysis and selection of Fraxinus mandshurica half-sib families[J].Journal of Central South University of Forestry & Technology,2023,43(2):144-154. | |
11 | 刘旭.水曲柳生长性状及光合生理特性差异分析[D].长春:吉林农业大学,2023. |
LIU X.Analysis of differences in growth and photosynthetic physiological characteristics of Fraxinus mandshurica [D].Changchun:Jilin Agricultural University,2023. | |
12 | 王艳梅,王海洋,代莉,等.不同低温处理对12个种源山桐子种子休眠解除的影响[J].山东农业大学学报(自然科学版),2015,46(1):51-56. |
WANG Y M, WANG H Y, DAI L,et al.Effect of different low temperature treatments on breaking Idesia polycarpa seed dormancy among 12 provenances[J].Journal of Shandong Agricultural University (Natural Science Edition),2015,46(1):51-56. | |
13 | 陆泓茜,于忠亮,付世萃,等.不同种源文冠果种子萌发及苗期生长差异研究[J].吉林林业科技,2023,52(6):10-13. |
LU H Q, YU Z L, FU S C,et al.Study on the difference of seed germination and seedling growth of Xanthoceras sorbifolia from different provenances[J].Journal of Jilin Forestry Science and Technology,2023,52(6):10-13. | |
14 | 林鸣亮,陈仁利,王春胜,等.檀香紫檀优树及其嫁接无性系间种子形态和萌发特征变异[J].热带作物学报,2024,45(5):964-972. |
LIN M L, CHEN R L, WANG C S,et al.Variation in seed morphology and germination characteristics between superior trees of Pterocarpus santalinus and its grafted clones[J].Chinese Journal of Tropical Crops,2024,45(5):964-972. | |
15 | 倪召欣.侧柏半同胞家系种质资源评价与筛选[D].泰安:山东农业大学,2020. |
NI Z X.Evaluation of germplasm resources of half-sib family of Platycladus orientalis [D].Tai’an:Shandong Agricultural University,2020. | |
16 | 袁德水,黄岩,杨俊明,等.华北落叶松8个优良家系的种子萌发及苗期生长特性[J].河北林果研究,2017,32(1):6-10. |
YUAN D S, HUANG Y, YANG J M,et al.Seed germination and seedling growth characteristics of eight Larix principis-rupprechtii families[J].Hebei Journal of Forestry and Orchard Research,2017,32(1):6-10. | |
17 | 麦宝莹,洪舟,徐大平,等.不同家系交趾黄檀种子萌发及幼苗生长差异[J].南京林业大学学报(自然科学版),2019,43(2):153-160. |
MAI B Y, HONG Z, XU D P,et al.Variation of seed germination and seedling growth among different families of Dalbergia cochinchinensis [J].Journal of Nanjing Forestry University(Natural Sciences Edition),2019,43(2):153-160. | |
18 | 陈奶莲,汪攀,吴鹏飞,等.不同杉木半同胞家系种子生物学特性的差异[J].森林与环境学报,2015,35(3):230-235. |
CHEN N L, WANG P, WU P F,et al.Differences in seed biological characteristics of different half-sibChinese fir[J].Journal of Forest and Environment,2015,35(3):230-235. | |
19 | 聂林芽,曾素平,厉月桥,等.杉木半同胞家系生长性状遗传分析及优良家系选择[J].林业科技通讯,2022,65(10):3-9. |
NIE L Y, ZENG S P, LI Y Q,et al.Genetic analysis of growth traits and selection of excellent families in half sib families of Cunninghamia lanceolata [J].Forest Science and Technology,2022,65(10):3-9. | |
20 | 何梦雅.水曲柳种子裸层积催芽及再干燥贮藏条件的优化[D].哈尔滨:东北林业大学,2016. |
HE M Y.Optimization in condition of naked stratification and re-drying storage for Fraxinus mandshurica seeds[D].Harbin:Northeast Forestry University,2016. | |
21 | 游双红,涂淑萍,钟诚,等.变温层积过程中圆齿野鸦椿种胚形态及生理生化变化[J].江西农业大学学报,2014,36(3):582-586. |
YOU S H, TU S P, ZHONG C,et al.Changes in embryo morphology,physiology and biochemistry of Euscaphis konishii seeds in variable temperature stratification[J].Acta Agriculturae Universitis Jiangxiensis,2014,36(3):582-586. |
[1] | 管岳, 申文靖, 宋晓萌, 王妍欣, 阿克居力得孜·努尔改里得, 陈鹏飞, 周龙. 巴尔鲁克山野扁桃种子萌发特性[J]. 植物研究, 2024, 44(3): 400-409. |
[2] | 唐双龙, 陈时鑫, 王煜, 马丹炜, 杨世辉, 聂申明, 扎西泽里, 田正友. 中国特有种大理白前对高寒环境的形态适应特征[J]. 植物研究, 2024, 44(3): 389-399. |
[3] | 王仁睿, 刘鑫, 李杰. 濒危植物春剑的胚胎发育及果实和种子特征研究[J]. 植物研究, 2023, 43(6): 953-960. |
[4] | 单超然, 陈晓慧, 丁云飞, 赵威, 卢晗, 高尚珠, 齐凤慧, 詹亚光, 曾凡锁. 水曲柳FmCCoAOMT基因在木质素合成及非生物胁迫中的功能分析[J]. 植物研究, 2023, 43(5): 768-778. |
[5] | 吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云. 极危植物百山祖冷杉的种子雨[J]. 植物研究, 2023, 43(5): 711-719. |
[6] | 王丹, 张中帅, 曾庆银, 韩学敏. 滇西北冷杉属植物结实特性及种子特征研究[J]. 植物研究, 2023, 43(5): 647-656. |
[7] | 久西加, 王玉辉, 陈红刚, 王惠珍, 曾翠云, 杜弢. 基于熵权TOPSIS模型的桃儿七种子超低温保存条件筛选[J]. 植物研究, 2023, 43(3): 404-411. |
[8] | 任悦, 魏骋, 徐添添, 沈海龙, 杨玲. 超低温保存处理对水曲柳胚胎生理生化特征的影响[J]. 植物研究, 2023, 43(3): 396-403. |
[9] | 申晨静, 武文博, 耿露冉, 王福龙, 赵鹏舟, 宋金辉, 詹亚光, 尹静. 水杨酸、纳米氧化锌和促生真菌YZ13-1在水曲柳抵御干旱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 388-395. |
[10] | 矫春晶, 李明月, 张鹏. 外源激素浸种与渗透处理对水曲柳种子热休眠的作用[J]. 植物研究, 2023, 43(3): 370-378. |
[11] | 唐莹莹, 郭传超, 石荡, 蒋南林, 许正, 刘立强. 果肉和埋土深度对新疆野杏种子萌发与幼苗生长的影响[J]. 植物研究, 2023, 43(2): 251-260. |
[12] | 杨建伟, 李宗艳, 冯尧, 任书娴, 胡梦露, 叶松菩. 束花石斛的繁育生物学特性[J]. 植物研究, 2023, 43(1): 150-160. |
[13] | 王欢, 徐云飞, 刘一伯, 刘沁松, 徐文娟, 龙芸, 胥晓. 珙桐—灯台树枝和叶的水提物对白菜种子萌发和幼苗生长的化感效应[J]. 植物研究, 2022, 42(5): 866-875. |
[14] | 曹小路, 赵巧竹, 幸华, 栗孟飞. 桃儿七种子解剖结构及其萌发生长期形态特征[J]. 植物研究, 2022, 42(5): 746-752. |
[15] | 乐新贵, 王正伟, 宁馨, 孙锡青, 宋以刚. 苦槠传播体的萌发特性与种子休眠类型[J]. 植物研究, 2022, 42(4): 688-693. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||