植物研究 ›› 2017, Vol. 37 ›› Issue (3): 402-415.doi: 10.7525/j.issn.1673-5102.2017.03.011
吴敏怡1,2, 李霞1, 何亚飞1,4, 张琛1,3, 严婷1,3
收稿日期:
2016-12-28
出版日期:
2017-05-15
发布日期:
2017-06-03
通讯作者:
李霞,E-mail:jspplx@jaas.ac.cn
E-mail:jspplx@jaas.ac.cn
作者简介:
吴敏怡(1994-),女,本科,主要从事水稻光合生理方面的研究。
基金资助:
WU Min-Yi1,2, LI Xia1, HE Ya-Fei1,4, ZHANG Chen1,3, YAN Ting1,3
Received:
2016-12-28
Online:
2017-05-15
Published:
2017-06-03
Supported by:
摘要: 为了研究高表达转玉米C4-磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PEPC)基因水稻(PC)的耐旱性机制,本研究以PC和未转基因野生型原种kitaake为材料,分别在光照和黑暗预处理24 h,其中光照处理中光强为600 μmol·m-2·s-1,预处理后稻苗再在15%聚乙二醇-6000模拟干旱胁迫下,同时使用药理学的方法,通过加入脱落酸和己糖激酶的专一性抑制剂100 μmol·L-1去甲二氢愈创木酸和10 mmol·L-1葡萄糖胺,观察两种水稻4~5叶期稻苗耐旱表现。结果发现,与WT水稻相比,在PEG-6000处理后,经过光预处理的PC水稻叶片相对含水量下降较少,始终比WT的高,而且丙二醛含量则较少,脯氨酸诱导增加,表现耐旱;而经过暗预处理后PC植株显著降低这个优势,表明光预处理有利于PC耐旱性的表现;黑暗预处理均显著下调了2供试材料植株叶片中可溶性糖的含量,而对可溶性蛋白的含量影响不显著;而光预处理后PC水稻叶片内可溶性糖含量比WT增加,而在黑暗预处理则PC的显著低于WT的,其中葡萄糖胺对光预处理下PC的可溶性糖含量的下调作用最显著;暗预处理逆转或消除了NO,H2O2和钙离子含量变化趋势,这些变化与暗预处理减少了两材料叶片蔗糖和葡萄糖含量变化同步;光暗预处理对两材料的PEPC酶活性的差异影响不大,表明外源玉米C4-PEPC在水稻中是组成型表达。可见PC叶片可部分通过糖组分,参与内源糖介导ABA和HXK信号途径,缓解干旱处理对叶片的伤害,稳定光合能力。
中图分类号:
吴敏怡, 李霞, 何亚飞, 张琛, 严婷. 脱落酸和己糖激酶抑制剂对高表达C4-PEPC转基因稻苗耐旱性的影响[J]. 植物研究, 2017, 37(3): 402-415.
WU Min-Yi, LI Xia, HE Ya-Fei, ZHANG Chen, YAN Ting. Drought Response in Overexpression of Maize Phosphoenolpyruvate Carboxylase Rice Seedlings Treated by Inhibitors of ABA and HXK Pathway[J]. Bulletin of Botanical Research, 2017, 37(3): 402-415.
1. Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560. 2. Zhu X G,Long S P,Ort D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology,2010,61(1):235-261. 3. Karki S,Rizal G,Quick W P. Improvement of photosynthesis in rice(Oryza sativa L.) by inserting the C4 pathway[J]. Rice,2013,6:28. 4. O'leary B,Park J,Plaxton W C. The remarkable diversity of plant PEPC(phosphoenolpyruvate carboxylase):recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs[J]. Biochemical Journal,2011,436(1):15-34. 5. Ku M S B,Agarie S,Nomura M,et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nature Biotechnology,1999,17(1):76-80. 6. Jeanneau M,Gerentes D,Foueillassar X,et al. Improvement of drought tolerance in maize:towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC[J]. Biochimie,2002,84(11):1127-1135. 7. Jiao D M,Kuang T Y,Li X,et al. Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice[J]. Science in China Series C:Life Sciences,2003,46(4):438-446. 8. Bandyopadhyay A,Datta K,Zhang J,et al. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize[J]. Plant Science,2007,172(6):1204-1209. 9. Lian L,Wang X W,Zhu Y S,et al. Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene[J]. Molecular Biology Reports,2014,41(4):2189-2197. 10. Ren C G,Li X,Liu X L,et al. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice[J]. Plant Physiology and Biochemistry,2014,74:218-229. 11. Ding Z S,Sun X F,Huang S H,et al. Response of photosynthesis to short-term drought stress in rice seedlings overexpressing C4 phosphoenolpyruvate carboxylase from maize and millet[J]. Photosynthetica,2015,53(4):481-488. 12. 钱宝云,刘小龙,李霞. 钙肥对不同内源钙含量水稻品种光合作用的影响[J]. 江苏农业学报,2014,30(3):467-473.Qian B Y,Liu X L,Li X. Photosynthesis of rice cultivars with various endogenous calcium contents in response to calcium fertilizer application[J]. Jiangsu Journal of Agricultural Sciences,2014,30(3):467-473. 13. 霍垲,陆巍,李霞. 干旱胁迫下调节ATP的含量对提高转玉米C4型pepc水稻光合速率的影响[J]. 中国生态农业学报,2015,23(5):605-613.Huo K,Lu W,Li X. Effect of regulating ATP on improving photosynthetic rate of transgenic rice with overexpressing maize C4 pepc under drought stress[J]. Chinese Journal of Eco-Agriculture,2015,23(5):605-613. 14. 唐玉婷,李霞,陆巍,等. 高表达转C4型PEPC基因水稻在低氮下诱导碳氮酶稳定光合作用[J]. 华北农学报,2015,30(4):95-100.Tang Y T,Li X,Lu W,et al. Transgenic rice with high expression of C4-PEPC genes induced higher carbon and nitrogen key enzyme to maintain photosynthesis under low nitrogen condition[J]. Acta Agriculturae Boreali-Sinica,2015,30(4):95-100. 15. Wingler A,Roitsch T. Metabolic regulation of leaf senescence:interactions of sugar signalling with biotic and abiotic stress responses[J]. Plant Biology,2008,10(S1):50-62. 16. Ruan Y L,Jin Y,Yang Y J,et al. Sugar input,metabolism,and signaling mediated by invertase:roles in development,yield potential,and response to drought and heat[J]. Molecular Plant,2010,3(6):942-955. 17. Keunen E,Peshev D,Vangronsveld J,et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress:extending the traditional concept[J]. Plant,Cell &Environment,2013,36(7):1242-1255. 18. Kunz S,Pesquet E,Kleczkowski L A. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana[J]. PLoS One,2014,9(6):e100312. 19. Lastdrager J,Hanson J,Smeekens S. Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany,2014,65(3):799-807. 20. 李霞,王超,任承钢,等. 正丁醇和高光强下转玉米pepc基因水稻叶片超微结构的变化[J]. 西北植物学报,2010,30(8):1614-1621.Li X,Wang C,Ren C G,et al. Change of micro-structure in transgenic rice of pepc gene from maize with high photo-efficiency under the strong light with 1-Butanol treatment[J]. Acta Botanica Boreali-Occidentalia Sinica,2010,30(8):1614-1621. 21. Li X,Wang C. Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage[J]. Acta Physiologiae Plantarum,2013,35(5):1503-1512. 22. Liu X L,Li X,Zhang C,et al. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress[J]. Physiologia Plantarum,2017,159(2):178-200,doi:10.1111/ppl. 12506.2016. 23. Tuteja N. Abscisic acid and abiotic stress signaling[J]. Plant Signaling & Behavior,2007,2(3):135-138. 24. Granot D,David-schwartz R,Kelly G. Hexose kinases and their role in sugar-sensing and plant development[J]. Frontiers in Plant Science,2013,4:44. 25. Cho J I,Ryoo N,Eom J S,et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors[J]. Plant Physiology,2009,149(2):745-759. 26. Albacete A A,Martínez-andújar C,Pérez-alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought:from plant survival to crop yield stability[J]. Biotechnology Advances,2014,32(1):12-30,doi:10.1016/j. biotechadv. 2013.10.005. 27. Cho Y H,Sheen J,Yoo S D. Low glucose uncouples hexokinase1-dependent sugar signaling from stress and defense hormone abscisic acid and C2H4 responses in Arabidopsis[J]. Plant Physiology,2010,152(3):1180-1182. 28. Chen P B,Li X,Huo K,et al. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors[J]. Journal of Plant Physiology,2014,171(6):458-466. 29. Yoshida S,Fomo D A,Cock J H,et al. Laboratory manual for physiological studies of rice[M]. Los Baños:IRRI,1972:61-64. 30. Qian B Y,Li X,Liu X L,et al. Enhanced drought tolerance in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene via NO and Ca2+[J]. Journal of Plant Physiology,2015,175:9-20. 31. Li X,Wang C,Ren C G. Effects of 1-butanol,neomycin,and calcium on the photosynthetic characteristics of pepc transgenic rice[J]. Africa Journal Biotechnology,2011,10:17466-17476. 32. 刘小龙,李霞,钱宝云. 外源Ca2+对PEG处理下转C4型PEPC基因水稻光合生理的调节[J]. 植物学报,2015,50(2):206-216.Liu X L,Li X,Qian B Y. Photosynthetic and physiological regulation of C4 phosphoenolpyruvate carboxylase transgenic Rice(Oryza sativa) by exogenous Ca2+ under polyethylene glycol stress[J]. Chinese Bulletin of Botany,2015,50(2):206-216. 33. Dhindsa R S,Matowe W. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany,1981,32(1):79-91. 34. Bates L S,Waldren R P,Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207. 35. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1-2):248-254. 36. Murphy M E,Noack E. Nitric oxide assay using hemoglobin method[J]. Methods in Enzymology,1994,233:240-250. 37. Patterson B D,Macrac E A,Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium(IV)[J]. Analytical Biochemistry,1984,139(2):487-492. 38. 杨彩琴,刘伟娜,赵志弘,等. 血清钙的甲基百里香酚蓝测定法[J]. 光谱学与光谱分析,1998,18(4):485-487.Yang C Q,Liu W N,Zhao Z H,et al. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent[J]. Spectroscopy and Spectral Analysis,1998,18(4):485-487. 39. 李佐同,靳学慧,张亚玲,等. 水稻幼苗可溶性糖及可溶性蛋白含量与抗瘟性的关系[J]. 北方水稻,2009,39(4):6-9.Li Z T,Jin X H,Zhang Y L,et al. The relationship between soluble protein,soluble sugar content and rice blast resistance of rice seedlings[J]. North Rice,2009,39(4):6-9. 40. Gigliolii-guivarc'h N,Pierre J N,Brown S,et al. The light-dependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from digitaria sanguinalis[J]. The Plant Cell,1996,8(4):573-586. 41. 陈平波,李霞. 低浓度NO对高表达转玉米C4型pepc水稻光合的促进[J]. 植物研究,2012,32(4):402-409.Chen P B,Li X. Promotion of photosynthesis of transgenic rice plant with overexpressing C4 pepc from maize under low concentration NO[J]. Bulletin of Botanical Research,2012,32(4):402-409. 42. Shao R X,Wang K B,Shangguan Z P. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal:probed by ESR spectroscopy and fast OJIP fluorescence rise[J]. Journal of Plant Physiology,2010,167(6):472-479. 43. Hu X L,Wang W,Li C Q,et al. Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress[J]. Plant Growth Regulation,2008,55(3):183-198. 44. Lecourieux D,Ranjeva R,Pugin A. Calcium in plant defence-signalling pathways[J]. New Phytology,2006,171(2):249-269. 45. Cao Y Y,Yang M T,Chen S Y,et al. Exogenous sucrose influences antioxidant enzyme activities and reduces lipid peroxidation in water-stressed cucumber leaves[J]. Biologia Plantarum,2015,59(1):147-153. 46. Gupta A K,Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants[J]. Journal of Biosciences,2005,30(5):761-776. 47. Matsuoka M,Minami E I. Complete structure of the gene for phosphoenolpyruvate carboxylase from maize[J]. European Journal of Biochemistry,1989,181(3):593-598. 48. Lepiniec L,Keryer E,Philippe H. Sorghum phosphoenolpyruvate carboxylase gene family:structure,function and molecular evolution[J]. Plant Molecular Biology,1993,21(3):487-502. 49. Fan Z Q,Li J Y,Lu M Z,et al. Overexpression of phosphoenolpyruvate carboxylase from Jatropha curcas increases fatty acid accumulation in Nicotiana tabacum[J]. Acta Physiologiae Plantarum,2013,35(7):2269-2279. 50. Hu L,Li Y,Xu W G,et al. Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene[J]. Plant Breeding,2012,131(3):385-391. 51. Wang Y M,Xu W G,Hu L,et al. Expression of maize gene encoding C4-pyruvate orthophosphate dikinase(PPDK) and C4-phosphoenolpyruvate carboxylase(PEPC) in transgenic Arabidopsis[J]. Plant Molecular Biology Reporter,2012,30(6):1367-1374. 52. Nayyar H,Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress:association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany,2006,58(1-3):106-113. 53. 钱宝云,李霞. 植物气孔运动调节的新进展[J]. 植物研究,2013,33(1):120-128.Qian B Y,Li X. New research progress on the regulation of stomatal movement in plant[J]. Bulletin of Botanical Research,2013,33(1):120-128. 54. Couée I,Sulmon C,Gouesbet E,et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany,2006,57(3):449-459. 55. Bolouri-moghaddam M R,Le ROY K,Xiang L,et al. Sugar signalling and antioxidant network connections in plant cells[J]. FEBS Journal,2010,277(9):2022-2037. 56. 胡梦芸,李辉,张颖君,等. 水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响[J]. 作物学报,2009,35(4):724-732.Hu M Y,Li H,Zhang Y J,et al. Photosynthesis and related physiological characteristics affected by exogenous glucose in wheat seedlings under water stress[J]. Acta Agronomica Sinica,2009,35(4):724-732. 57. 闫素芳,于洋,葛青,等. 外源蔗糖对小麦幼苗耐盐性的影响[J]. 中国生态农业学报,2012,20(2):225-230.Yan S F,Yu Y,Ge Q,et al. Effect of exogenous sucrose application on wheat seedling salt tolerance[J]. Chinese Journal of Eco-Agriculture,2012,20(2):225-230. 58. 任承刚,李霞. 外源过氧化氢对孕穗期转C4 pepc水稻及原种光合特性的影响[J]. 华北农学报,2010,25(4):130-135.Ren C G,LI X. Effect of Exogenous H2O2 on photosynthetic characteristics in PEPC transgenic rice[J]. Acta Agriculturae Boreali-Sinica,2010,25(4):130-135. 59. 刘小龙,李霞,钱宝云,等. 植物体内钙信号及其在调节干旱胁迫中的作用[J]. 西北植物学报,2014,34(9):1927-1936.Liu X L,Li X,Qian B Y,et al. Ca2+ signal transduction and its regulation role under drought stress in plant[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(9):1927-1936. 60. Echevarría C,Garcia-mauriño S,Alvarez R,et al. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in sorghum leaves[J]. Planta,2001,214(2):283-287. 61. Sánchez R,Flores A,Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress[J]. Planta,2006,223(5):901-909. 62. Brown N J,Palmer B G,Stanley S,et al. C4 acid decarboxylases required for C4 photosynthesis are active in the mid-vein of the C3 species Arabidopsis thaliana,and are important in sugar and amino acid metabolism[J]. The Plant Journal,2010,61(1):122-133. 63. 李霞,任承钢. ABA、BA和DPI对高表达玉米C4 pepc水稻光合特性及叶绿素荧光特性的影响[J]. 植物生理学报,2012,48(6):549-556.LI X,REN C G. Effects on photosynthetic and fluorescence characteristics under treatments of ABA,BA or DPI in the transgenic rice with over-expression C4 pepc gene[J]. Plant Physiology Journal,2012,48(6):549-556. 64. Huo K,Li X,He Y F,et al. Exogenous ATP enhance signal response of suspension cells of transgenic rice(Oryza sativa L.) expressing maize C e4-pepc encoded phosphoenolpyruvate carboxylase under PEG treatment[J]. Plant Growth Regulation,2017,1(82):55-67. |
[1] | 王静, 章英才, 陶珊珊, 杨雪. 果胶酶对灵武长枣果实发育中阿拉伯半乳糖蛋白分布的影响[J]. 植物研究, 2024, 44(1): 62-74. |
[2] | 陈家兴, 王姝, 陈林丽, 侯夏丽, 杨庆祝, 尹任娅. 干旱条件对鬼针草和醉鱼草种间相互作用及生长的影响[J]. 植物研究, 2023, 43(5): 720-728. |
[3] | 金小玲, 吴慧敏, 杨潮锋, 张进, 卢孟柱, 曾为. 离子色谱HPAEC-PAD法测定杨树细胞壁非纤维素单糖组分[J]. 植物研究, 2023, 43(5): 787-793. |
[4] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
[5] | 朱翰林, 赵恒, 翟博文, 张卯玉, 付玉杰. 超声辅助酶解提取五味子多糖及其抗细胞氧化应激研究[J]. 植物研究, 2023, 43(4): 631-640. |
[6] | 邹书珍, 尹才佳, 杨茜, 马龙, 康迪. 子午岭次生油松林立木竞争格局研究[J]. 植物研究, 2023, 43(1): 140-149. |
[7] | 黄东梅, 陈颖, 白露, 倪迪安, 徐奕扬, 张志国, 秦巧平. 萱草叶片响应低温胁迫的转录组分析[J]. 植物研究, 2022, 42(3): 424-436. |
[8] | 魏斌, 李毅, 苏世平. 外源脯氨酸对自然干旱下白刺叶片气孔的影响[J]. 植物研究, 2022, 42(3): 492-501. |
[9] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
[10] | 何凤, 杜红岩, 刘攀峰, 王璐, 庆军, 杜兰英. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
[11] | 王孟珂, 田梦妮, 毕泉鑫, 刘肖娟, 于海燕, 王利兵. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选[J]. 植物研究, 2021, 41(6): 957-964. |
[12] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[13] | 李钰, 杨晓, 叶霄, 邓洁琼, 黄位年, 代沙. 超声辅助提取红花中主要活性成分的工艺优化[J]. 植物研究, 2021, 41(5): 824-835. |
[14] | 杜梦甜, 王博一, 李京航, 赵铭远, 王秀伟. 落叶松不同根序细根可溶性糖和淀粉浓度的差异和季节动态[J]. 植物研究, 2021, 41(4): 491-495. |
[15] | 杨德丽, 王娟娟, 庞海龙, 孙坤, 冯汉青. 胞外ATP对壳聚糖诱导的ROS和PAL活性变化的影响[J]. 植物研究, 2021, 41(4): 588-595. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||