植物研究 ›› 2025, Vol. 45 ›› Issue (5): 662-674.doi: 10.7525/j.issn.1673-5102.2025.05.002
高雷1, 杨瑞彤1, 刘宝东1, 贾淑霞1(), 郭亚芬2, 崔晓阳2
收稿日期:
2025-02-24
出版日期:
2025-09-20
发布日期:
2025-09-28
通讯作者:
贾淑霞
E-mail:jsxlxp@hotmail.com
作者简介:
高雷(1991—),男,博士,副教授,主要从事植物-土壤-微生物氮循环研究。
基金资助:
Lei GAO1, Ruitong YANG1, Baodong LIU1, Shuxia JIA1(), Yafen GUO2, Xiaoyang CUI2
Received:
2025-02-24
Online:
2025-09-20
Published:
2025-09-28
Contact:
Shuxia JIA
E-mail:jsxlxp@hotmail.com
摘要:
植物吸收土壤氮的过程及其多维度策略对生态系统生物多样性和碳汇功能具有重要影响。该文系统回顾了植物氮营养理论发展历程,介绍了矿质营养理论和矿质-有机营养理论,重点阐述了植物对土壤氮吸收的多维度策略,主要涉及4个方面:(1)多形态氮吸收,这既包括铵态氮和硝态氮,也包括一系列低相对分子质量有机氮,如氨基酸、氨基糖和寡肽等;(2)季节性吸收,植物对土壤多形态氮吸收数量和模式具有显著的季节性变异,不同植物的吸收规律可能存在差异;(3)土层分化吸收,根系构型及土壤有效氮在土壤垂直层次的变异影响植物对土壤不同层次氮量及氮形态的吸收;(4)共生方式分化吸收,固氮细菌、菌根真菌及深色有隔内生真菌等促进植物氮吸收,并在一定程度上影响植物对不同形态氮的获取。综上,植物氮吸收的多维度策略是生态系统植物共存和生态位分化的基础,在缓解植物种间竞争、减少氮损失及提高生态系统氮利用效率等方面发挥重要作用。目前,对植物氮吸收策略的研究尚有不足,与之相关的一些关键科学问题亟待解决,如原位土壤有效氮的含量与动态,不同土壤有效氮的周转差异,植物氮吸收策略的分子生物学机制,以及不同有效氮对植物氮营养的贡献等。
中图分类号:
高雷, 杨瑞彤, 刘宝东, 贾淑霞, 郭亚芬, 崔晓阳. 植物对土壤氮吸收的多维度策略及其生态意义[J]. 植物研究, 2025, 45(5): 662-674.
Lei GAO, Ruitong YANG, Baodong LIU, Shuxia JIA, Yafen GUO, Xiaoyang CUI. Diversification of Plant Soil Nitrogen Uptake Strategies and Its Ecological Implications[J]. Bulletin of Botanical Research, 2025, 45(5): 662-674.
[1] | LEBAUER D S, TRESEDER K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J].Ecology,2008,89(2):371-379. |
[2] | NÄSHOLM T, EKBLAD A, NORDIN A,et al.Boreal forest plants take up organic nitrogen[J].Nature,1998,392(6679):914-916. |
[3] | GAO L, CUI X Y, HILL P W,et al.Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China[J].Applied Soil Ecology,2020,147:103398. |
[4] | REN H, GAO G Q, MA Y Y,et al.Shift of root nitrogen-acquisition strategy with tree age is mediated by root functional traits along the collaboration gradient of the root economics space[J].Tree Physiology,2023,8(43):1341-1353. |
[5] | HILL P W, FARRAR J, ROBERTS P,et al.Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition[J].Nature Climate Change,2011,1(1):50-53. |
[6] | WARREN C R.Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants[J].New Phytologist,2013,198(2):476-485. |
[7] | NÄSHOLM T, KIELLAND K, GANETEG U.Uptake of organic nitrogen by plants[J].New Phytologist,2009,182(1):31-48. |
[8] | 崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8):3500-3512. |
CUI X Y.Organic nitrogen use by plants and its significance in some natural ecosystems[J].Acta Ecologica Sinica,2007,27(8):3500-3512. | |
[9] | 曹小闯,吴良欢,马庆旭,等.高等植物对氨基酸态氮的吸收与利用研究进展[J].应用生态学报,2015,26(3):919-929. |
CAO X C, WU L H, MA Q X,et al.Advances in studies of absorption and utilization of amino acids by plants:a review[J].Chinese Journal of Applied Ecology,2015,26(3):919-929. | |
[10] | LI X Y, RENNENBERG H, SIMON J.Seasonal variation in N uptake strategies in the understorey of a beech-dominated N-limited forest ecosystem depends on N source and species[J].Tree Physiology,2016,36(5):589-600. |
[11] | KOYAMA L A, KIELLAND K.Black spruce assimilates nitrate in boreal winter[J].Tree Physiology,2019,39(4):536-543. |
[12] | BRINKMANN N, EUGSTER W, BUCHMANN N,et al.Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil[J].Plant Biology,2019,21(1):71-81. |
[13] | HILL P W, BROUGHTON R, BOUGOURE J,et al.Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic[J].Ecology Letters,2019,22(12):2111-2119. |
[14] | SHI J C, WANG X L, WANG E T.Mycorrhizal symbiosis in plant growth and stress adaptation:from genes to ecosystems[J].Annual Review of Plant Biology,2023,74(1):569-607. |
[15] | MCKANE R B, JOHNSON L C, SHAVER G R,et al.Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J].Nature,2002,415(6867):68-71. |
[16] | ASHTON I W, MILLER A E, BOWMAN W D,et al.Niche complementarity due to plasticity in resource use:plant partitioning of chemical N forms[J].Ecology,2010,91(11):3252-3260. |
[17] | XI N X, ZHU B R, ZHANG D Y.Contrasting grass nitrogen strategies reflect interspecific trade-offs between nitrogen acquisition and use in a semi-arid temperate grassland[J].Plant and Soil,2017,418:267-276. |
[18] | USCOLA M, VILLAR-SALVADOR P, OLIET J,et al.Root uptake of inorganic and organic N chemical forms in two coexisting Mediterranean forest trees[J].Plant and Soil,2017,415:387-392. |
[19] | HÖGBERG P, NÄSHOLM T, FRANKLIN O,et al.Tamm review:on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests[J].Forest Ecology and Management,2017,403:161-185. |
[20] | SCHIMEL J P, BENNETT J.Nitrogen mineralization:challenges of a changing paradigm[J].Ecology,2004,85(3):591-602. |
[21] | CHAPIN III F S, FETCHER N, KEILLAND K,et al.Productivity and nutrient cycling of Alaskan tundra:enchancement by flowing water[J].Ecology,1988,69(5):1638. |
[22] | 王文颖,刘俊英.植物吸收利用有机氮营养研究进展[J].应用生态学报,2009,20(5):1223-1228. |
WANG W Y, LIU J Y.Research advances in organic nitrogen acquisition by plants[J].Chinese Journal of Applied Ecology,2009,20(5):1223-1228. | |
[23] | CHAPIN III F S, MOILANEN L, KIELLAND K.Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J].Nature,1993,361(6408):150-153. |
[24] | YU C L, LIU M, SONG M H,et al.Nitrogen enrichment enhances the competition for nitrogen uptake between Stipa purpurea and microorganisms in a Tibetan alpine steppe[J].Plant and Soil,2023,488:503-516. |
[25] | 高雷.东北八种森林类型土壤有效氮、动态及植物吸收特征[D].哈尔滨:东北林业大学,2021. |
GAO L.Pool size and dynamics of soil available nitrogen and plant uptake characteristics in eight forest types in northeast China[D].Harbin:Northeast Forestry University,2021. | |
[26] | JONES D L, HEALEY J R, WILLETT V B,et al.Dissolved organic nitrogen uptake by plants:an important N uptake pathway?[J].Soil Biology and Biochemistry,2005,37(3):413-423. |
[27] | GAO L, SMITH A R, JONES D L,et al.How do tree species with different successional stages affect soil organic nitrogen transformations?[J].Geoderma,2023,430:116319. |
[28] | KUZYAKOV Y, XU X L.Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance[J].New Phytologist,2013,198(3):656-669. |
[29] | VAN DER HEIJDEN M G A, MARTIN F M, SELOSSE M A,et al.Mycorrhizal ecology and evolution:the past,the present,and the future[J].New Phytologist,2015,205(4):1406-1423. |
[30] | READ D J, PEREZ-MORENO J.Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?[J].New Phytologist,2003,157(3):475-492. |
[31] | NEWSHAM K K.A meta-analysis of plant responses to dark septate root endophytes[J].New Phytologist,2011,190(3):783-793. |
[32] | SCHMIDT S, NÄSHOLM T, RENTSCH D.Organic nitrogen[J].New Phytologist,2014,203(1):29-31. |
[33] | KAHMEN A, RENKER C, UNSICKER S B,et al.Niche complementarity for nitrogen:an explanation for the biodiversity and ecosystem functioning relationship?[J].Ecology,2006,87(5):1244-1255. |
[34] | 徐兴良,白洁冰,欧阳华.植物吸收土壤有机氮的研究进展[J].自然资源学报,2011,26(4):715-724. |
XU X L, BAI J B, OUYANG H.Advances in studies on organic nitrogen uptake by terrestrial plants[J].Journal of Natural Resources,2011,26(4):715-724. | |
[35] | GAO L, SMITH A R, GENG B L,et al.Nitrogen uptake strategies of coexisting plant species in forest ecosystems of northeast China:implications for afforestation[J].Forest Ecology and Management,2025,578:122481. |
[36] | FENG Y L, WANG J, YUAN K,et al.Vegetation affects pool size and composition of amino acids in Tibetan alpine meadow soils[J].Geoderma,2018,310:44-52. |
[37] | GAO L, HILL P W, JONES D L,et al.Seasonality is more important than forest type in regulating the pool size and composition of soil soluble N in temperate forests[J].Biogeochemistry,2020,150:279-295. |
[38] | MA Q X, WANG J, SUN Y,et al.Elevated CO2 levels enhance the uptake and metabolism of organic nitrogen[J].Physiologia Plantarum,2018,162(4):467-478. |
[39] | XU X L, OUYANG H, RICHTER A,et al.Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow[J].Journal of Ecology,2011,99(2):563-571. |
[40] | GAO L, SMITH A R, JONES D L,et al.Respiration and carbon use efficiency characteristics of soluble protein-derived carbon by soil microorganisms:a case study at afforested sites[J].Soil Biology and Biochemistry,2024,188:109255. |
[41] | 闫小莉,林智熠,胡文佳,等.林木氮素吸收偏好性及其形成机制研究进展[J].世界林业研究,2020,33(5):25-30. |
YAN X L, LIN Z Y, HU W J,et al.A review of nitrogen uptake preference of trees and its formation mechanism[J].World Forestry Research,2020,33(5):25-30. | |
[42] | 任海燕,田磊,朱毅,等.氮水添加改变内蒙古典型草原两种优势植物的氮吸收偏好[J].科学通报,2022,67(13):1459-1468. |
REN H Y, TIAN L, ZHU Y,et al.Nitrogen and water addition alter nitrogen uptake preferences of two dominant plant species in a typical Inner Mongolian steppe[J].Chinese Science Bulletin,2022,67(13):1459-1468. | |
[43] | LIU M, LI C C, XU X L,et al.Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests[J].Tree Physiology,2017,37(11):1515-1526. |
[44] | ZHU F F, DAI L M, HOBBIE E A,et al.Uptake patterns of glycine,ammonium,and nitrate differ among four common tree species of northeast China[J].Frontiers in Plant Science,2019,10:799. |
[45] | BOUDSOCQ S, NIBOYET A, LATA J C,et al.Plant preference for ammonium versus nitrate:a neglected determinant of ecosystem functioning?[J].The American Naturalist,2012,180(1):60-69. |
[46] | HE X X, CHI Q D, MENG L,et al.Plants with nitrate preference can regulate nitrification to meet their nitrate demand[J].Soil Biology and Biochemistry,2022,165:108516. |
[47] | HARRISON K A,BOL R, BARDGETT R D.Preferences for different nitrogen forms by coexisting plant species and soil microbes[J].Ecology,2007,88(4):989-999. |
[48] | ROTHSTEIN D E.In-situ root uptake and soil transformations of glycine,glutamine and ammonium in two temperate deciduous forests of contrasting N availability[J].Soil Biology and Biochemistry,2014,75:233-236. |
[49] | INSELSBACHER E, NÄSHOLM T.The below-ground perspective of forest plants:soil provides mainly organic nitrogen for plants and mycorrhizal fungi[J].New Phytologist,2012,195(2):329-334. |
[50] | VIEUBLÉ GONOD L, JONES D L, CHENU C.Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates[J].European Journal of Soil Science,2006,57(3):320-329. |
[51] | ROTHSTEIN D E.Effects of amino-acid chemistry and soil properties on the behavior of free amino acids in acidic forest soils[J].Soil Biology and Biochemistry,2010,42(10):1743-1750. |
[52] | WARREN C R.Organic N molecules in the soil solution:what is known,what is unknown and the path forwards[J].Plant and Soil,2014,375:1-19. |
[53] | WANG C, LI J, LIU Q H,et al.Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index[J].Sensors,2017,17(9):1982. |
[54] | MA Q X, KUZYAKOV Y, PAN W K,et al.Substrate control of sulphur utilisation and microbial stoichiometry in soil:results of 13C,15N,14C,and 35S quad labelling[J].The ISME Journal,2021,15(11):3148-3158. |
[55] | SCHIMEL J P, CLEIN J S.Microbial response to freeze-thaw cycles in tundra and taiga soils[J].Soil Biology and Biochemistry,1996,28(8):1061-1066. |
[56] | SASSE J, MARTINOIA E, NORTHEN T.Feed your friends:do plant exudates shape the root microbiome?[J].Trends in Plant Science,2018,23(1):25-41. |
[57] | ZHALNINA K, LOUIE K B, HAO Z,et al.Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J].Nature Microbiology,2018,3(4):470-480. |
[58] | 谷加存,王亚楠,肖立娟,等.落叶松凋落物层和土壤层1~5级细根形态和结构特征[J].东北林业大学学报,2019,47(4):33-37. |
GU J C, WANG Y N, XIAO L J,et al.Morphological and structural characteristics of 1-5 order roots in litter and soil horizons of Larix gmelinii Rupr.plantation[J].Journal of Northeast Forestry University,2019,47(4):33-37. | |
[59] | HERBEN T, VOZÁBOVÁ T, HADINCOVÁ V,et al.Vertical root distribution of individual species in a mountain grassland community:does it respond to neighbours?[J].Journal of Ecology,2018,106(3):1083-1095. |
[60] | ZHOU Y, WIGLEY B J, CASE M F,et al.Rooting depth as a key woody functional trait in savannas[J].New Phytologist,2020,227(5):1350-1361. |
[61] | LUO W Q, NI M, WANG Y S,et al.Limited evidence of vertical fine-root segregation in a subtropical forest[J].New Phytologist,2021,231(6):2308-2318. |
[62] | 高雷,崔晓阳,郭亚芬,等.小兴安岭地区典型红松林下不同形态土壤氮的动态变化[J].北京林业大学学报,2017,39(12):52-60. |
GAO L, CUI X Y, GUO Y F,et al.Dynamic changes of multi-form nitrogen in typical Pinus koraiensis forest of Xiaoxing’an Mountains of northeastern China[J].Journal of Beijing Forestry University,2017,39(12):52-60. | |
[63] | WILD B, SCHNECKER J, KNOLTSCH A,et al.Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia[J].Global Biogeochemical Cycles,2015,29(5):567-582. |
[64] | HOULE D, MOORE J D, OUIMET R,et al.Tree species partition N uptake by soil depth in boreal forests[J].Ecology,2014,95(5):1127-1133. |
[65] | VON FELTEN S, HECTOR A, BUCHMANN N,et al.Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness[J].Ecology,2009,90(5):1389-1399. |
[66] | GHERARDI L A, SALA O E, YAHDJIAN L.Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe[J].Oecologia,2013,173:1075-1081. |
[67] | XU P, WANG E T.Diversity and regulation of symbiotic nitrogen fixation in plants[J].Current Biology,2023,33(11):R543-R559. |
[68] | WU Z F, CHEN H Y, PAN Y,et al.Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses[J].New Phytologist,2022,235(1):276-291. |
[69] | LINDAHL B D, TUNLID A.Ectomycorrhizal fungi-potential organic matter decomposers,yet not saprotrophs[J].New Phytologist,2015,205(4):1443-1447. |
[70] | JIANG Y N, WANG W X, XIE Q J,et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J].Science,2017,356(6343):1172-1175. |
[71] | FRANKLIN O, NÄSHOLM T, HÖGBERG P,et al.Forests trapped in nitrogen limitation-an ecological market perspective on ectomycorrhizal symbiosis[J].New Phytologist,2014,203(2):657-666. |
[72] | RUOTSALAINEN A L, KAUPPINEN M, WÄLI P R,et al.Dark septate endophytes:mutualism from by-products?[J].Trends in Plant Science,2022,27(3):247-254. |
[73] | WRIGHT C L, LEHTOVIRTA-MORLEY L E.Nitrification and beyond:metabolic versatility of ammonia oxidising archaea[J].The ISME Journal,2023,17(9):1358-1368. |
[74] | LIU X J, ZHANG Y, HAN W X,et al.Enhanced nitrogen deposition over China[J].Nature,2013,494(7438):459-462. |
[75] | FOWLER D, COYLE M, SKIBA U,et al.The global nitrogen cycle in the twenty-first century[J].Philosophical Transactions of the Royal Society B,2013,368(1621):20130164. |
[76] | BUCKLEY S, JÄMTGÅRD S.Field-based soil extractions capture more amino acids that are lost during short-term storage[J].Geoderma,2025,454:117163. |
[77] | HU C C, LIU X Y, DRISCOLL A W,et al.Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants[J].Nature Communications,2024,15(1):6407. |
[78] | WANG L X.Global plant nitrogen use is controlled by temperature[J].Nature Communications,2024,15(1):7651. |
[79] | QUAN Z, ZHANG X, FANG Y T,et al.Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages[J].Nature Food,2021,2(4):241-245. |
[1] | 杨昕瑜, 张硕, 张曦文, 郑青山, 苏日力格, 谷加存. 白音敖包国家级自然保护区典型乔、灌木叶、枝及细根生态化学计量特征[J]. 植物研究, 2025, 45(5): 795-806. |
[2] | 刘熹, 黄弘远, 易盛昌, 余雅迪, 王皓, 倪小康, 胡玉丽, 张令. 入侵植物与菌根真菌互作及其对土壤氮循环的影响研究进展[J]. 植物研究, 2025, 45(3): 371-385. |
[3] | 孙耀文, 马迎梅, 任晓敏, 韩峰, 陈鑫, 左朗. 河套平原沙漠区3种乡土树种人工栽培后的生态适应性[J]. 植物研究, 2024, 44(4): 612-624. |
[4] | 庄伟伟, 王明明. 荒漠地区8种草本植物营养元素含量的比较分析[J]. 植物研究, 2022, 42(5): 896-909. |
[5] | 安静;王文杰*;王洪岩;苏冬雪;邱岭;祖元刚. 人工林和农田对东北地区土壤碳、氮含量及相关指标垂直分布的影响[J]. 植物研究, 2012, 32(3): 331-338. |
[6] | 张东来;毛子军*;朱胜英;周彪. 黑龙江省帽儿山林区6种主要林分类型凋落物研究[J]. 植物研究, 2008, 28(1): 104-108. |
[7] | 严岳鸿, 何祖霞, 佘书生, 黄忠良, 邢福武. 香港东北角吉澳群岛入侵植物调查[J]. 植物研究, 2005, 25(2): 242-248. |
[8] | 于明坚, 陈启瑺. 青冈常绿阔叶林钾的生物循环研究[J]. 植物研究, 1999, 19(4): 461-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||