Plant Diversity ›› 2025, Vol. 47 ›› Issue (03): 479-488.DOI: 10.1016/j.pld.2025.02.006
• Articles • Previous Articles Next Articles
Fu-Qiang Huanga, Josep Peñuelasb,c, Jordi Sardansb,c, Scott L. Collinsd, Kai-Liang Yue, Man-Qiong Liua, Jiu-Ying Peia, Wen-Bin Kea, Jian-Sheng Yea
Received:
2024-11-08
Revised:
2025-02-23
Online:
2025-05-21
Published:
2025-05-25
Contact:
Jian-Sheng Ye,E-mail:yejsh@lzu.edu.cn
Supported by:
Fu-Qiang Huanga, Josep Peñuelasb,c, Jordi Sardansb,c, Scott L. Collinsd, Kai-Liang Yue, Man-Qiong Liua, Jiu-Ying Peia, Wen-Bin Kea, Jian-Sheng Yea
通讯作者:
Jian-Sheng Ye,E-mail:yejsh@lzu.edu.cn
基金资助:
Fu-Qiang Huang, Josep Peñuelas, Jordi Sardans, Scott L. Collins, Kai-Liang Yu, Man-Qiong Liu, Jiu-Ying Pei, Wen-Bin Ke, Jian-Sheng Ye. Plant use of water across soil depths regulates species dominance under nitrogen addition[J]. Plant Diversity, 2025, 47(03): 479-488.
Fu-Qiang Huang, Josep Peñuelas, Jordi Sardans, Scott L. Collins, Kai-Liang Yu, Man-Qiong Liu, Jiu-Ying Pei, Wen-Bin Ke, Jian-Sheng Ye. Plant use of water across soil depths regulates species dominance under nitrogen addition[J]. Plant Diversity, 2025, 47(03): 479-488.
Aa, Y.L., Wang, G.Q., Liu, T.X., et al., 2019. Vertical variations of soil water and its controlling factors based on the structural equation model in a semi-arid grassland. Sci. Total Environ., 691, 1016-1026. https://doi.org/10.1016/j.scitotenv.2019.07.181. Avolio, M.L., Forrestel, E.J., Chang, C.C., et al., 2019. Demystifying dominant species. New Phytol., 223, 1106-1126. https://doi.org/10.1111/nph.15789. Bai, Y.F., Wu, J.G., Clark, C.M., et al., 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob. Change Biol., 16, 358-372. https://doi.org/10.1111/j.1365-2486.2009.01950.x. Bazzichetto, M., Sperandii, M.G., Penone, C., et al., 2024. Biodiversity promotes resistance but dominant species shape recovery of grasslands under extreme drought. J. Ecol., 112, 1087-1100. https://doi.org/10.1111/1365-2745.14288. Borer, E.T., Seabloom, E.W., Gruner, D.S., et al., 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 517-520. https://doi.org/10.1038/nature13144. Borer, E.T., Stevens, C.J., 2022. Nitrogen deposition and climate: an integrated synthesis. Trends Ecol. Evol., 37, 541-552. https://doi.org/10.1016/j.tree.2022.02.013. Chang, E.H., Li, P., Li, Z.B., et al., 2019. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. Catena, 181, 104095. https://doi.org/10.1016/j.catena.2019.104095. Chen, H.S., Shao, M.A., Li, Y.Y., 2008. Soil desiccation in the Loess Plateau of China. Geoderma, 143, 91-100. https://doi.org/10.1016/j.geoderma.2007.10.013. Chen, Y.P., Wang, K.B., Lin, Y.S., et al., 2015. Balancing green and grain trade. Nat. Geosci., 8, 739-741. https://doi.org/10.1038/ngeo2544. Chen, Z.X., Wang, G.H., Yang, X.L., et al., 2023. Agricultural Water Management. Agric. Water Manage., 279, 108206. https://doi.org/10.1016/j.agwat.2023.108206. Clark, C.M., Simkin, S.M., Allen, E.B., et al., 2019. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants, 5, 697-705. https://doi.org/10.1038/s41477-019-0442-8. Clark, C.M., Tilman, D., 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. https://doi.org/10.1038/nature06503. Dickson, T.L., Mittelbach, G.G., Reynolds, H.L., et al., 2014. Height and clonality traits determine plant community responses to fertilization. Ecology, 95, 2443-2452. https://doi.org/10.1890/13-1875.1. Ehleringer, J.R., Dawson, T.E., 1992. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ., 15, 1073-1082. https://doi.org/10.1111/j.1365-3040.1992.tb01657.x. Elser, J.J., Bracken, M.E., Cleland, E.E., et al., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett., 10, 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x. Eskelinen, A., Harpole, W.S., Jessen, M.T., et al., 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature, 611, 301-305. https://doi.org/10.1038/s41586-022-05383-9. Flores-Moreno, H., Reich, P.B., Lind, E.M., et al., 2016. Climate modifies response of non-native and native species richness to nutrient enrichment. Philos. Trans. R. Soc. B-Biol. Sci., 371, 20150273. https://doi.org/10.1098/rstb.2015.0273. Gai, H.Q., Shi, P.J., Li, Z., 2023. Untangling the uncertainties in plant water source partitioning with isotopes. Water Resour. Res., 59, e2022WR033849. https://doi.org/10.1029/2022WR033849. Galloway, J.N., Aber, J.D., Erisman, J.W., et al., 2003. The nitrogen cascade. Bioscience, 53, 341-356. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2. Galloway, J.N., Townsend, A.R., Erisman, J.W., et al., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674. Gitlin, A.R., Sthultz, C.M., Bowker, M.A., et al., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv. Biol., 20, 1477-1486. https://doi.org/10.1111/j.1523-1739.2006.00424.x. Gow, L.J., Barrett, D.J., O’grady, A.P., et al., 2018. Subsurface water-use strategies and physiological responses of subtropical eucalypt woodland vegetation under changing water-availability conditions. Agric. For. Meteorol., 248, 348-360. https://doi.org/10.1016/j.agrformet.2017.10.005. Grace, J.B., Scheiner, S.M., Schoolmaster, J., Donald R., 2015. Structural equation modeling: building and evaluating causal models. In: Fox, GA, et al. (eds), Ecological Statistics: Contemporary theory and application (pp. 168-199). Oxford University Press, UK. https://doi.org/10.1093/acprof:oso/9780199672547.003.0009. Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat., 111, 1169-1194. https://doi.org/10.1086/283244. Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol., 86, 902-910. https://doi.org/10.1046/j.1365-2745.1998.00306.x. Hautier, Y., Niklaus, P.A., Hector, A., 2009. Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638. https://doi.org/10.1126/science.11696. Hautier, Y., Seabloom, E.W., Borer, E.T., et al., 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525. https://doi.org/10.1038/nature13014. Hautier, Y., Zhang, P.F., Loreau, M., et al., 2020. General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nat. Commun., 11, 5375. https://doi.org/10.1038/s41467-020-19252-4. Hillebrand, H., Bennett, D.M., Cadotte, M.W., 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520. https://doi.org/10.1890/07-1053.1. Hou, G., Shi, P.L., Zhou, T.C., et al., 2023. Dominant species play a leading role in shaping community stability in the northern Tibetan grasslands. J. Plant Ecol., 16, rtac110. https://doi.org/10.1093/jpe/rtac110. Huang, F.Q., Wei, J.Z., Song, X., et al., 2021. δ2H and δ18O in precipitation and water vapor disentangle seasonal wind directions on the Loess Plateau. Sustainability, 13, 6938. https://doi.org/10.3390/su13126938. Huang, L.M., Pei, Y.W., Jia, X.X., et al., 2023. Multi-species plantation intensifies soil water competition and groundwater depletion in a water-limited desert region. For. Ecol. Manage., 537, 120953. https://doi.org/10.1016/j.foreco.2023.120953. Huang, Z.Q., Liu, B., Davis, M., et al., 2016. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytol., 210, 431-442. https://doi.org/10.1111/nph.13785. Huo, G.p., Zhao, X.N., Gao, X.D., et al., 2018. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China. Agric. Ecosyst. Environ., 265, 392-401. https://doi.org/10.1016/j.agee.2018.06.028. Jia, X.T., Tao, D.X., Ke, Y.G., et al., 2022. Dominant species control effects of nitrogen addition on ecosystem stability. Sci. Total Environ., 838, 156060. https://doi.org/10.1016/j.scitotenv.2022.156060. Jia, X.X., Bai, X., Liu, C.G., et al., 2024. Differences in plant water use between check-dam land and slope land on the Loess Plateau: Significance for vegetation restoration. Agric. Ecosyst. Environ., 362, 108849. https://doi.org/10.1016/j.agee.2023.108849. Klanderud, K., Totland, O., 2005. Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047-2054. https://doi.org/10.1890/04-1563. Ladouceur, E., Blowes, S.A., Chase, J.M., et al., 2022. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecol. Lett., 25, 2699-2712. https://doi.org/10.1111/ele.14126. Lanning, M., Wang, L.X., Benson, M., et al., 2020. Canopy isotopic investigation reveals different water uptake dynamics of maples and oaks. Phytochemistry, 175, 112389. https://doi.org/10.1016/j.phytochem.2020.112389. Li, H.L., Chen, J., Penuelas, J., et al., 2024. Water limitation drives species loss in grassland communities after nitrogen addition and warming. Proc. R. Soc. B-Biol. Sci., 291, 20240642. https://doi.org/10.1098/rspb.2024.0642. Li, H.L., Penuelas, J., Collins, S.L., et al., 2025. Water limitation as a driver of species richness decline in global grasslands under nutrient addition. Plant Soil, 1-10. https://doi.org/10.1007/s11104-025-07253-5. Li, H.L., Terrer, C., Berdugo, M., et al., 2023. Nitrogen addition delays the emergence of an aridity-induced threshold for plant biomass. Natl. Sci. Rev, 10, nwad242. https://doi.org/10.1093/nsr/nwad242. Li, W.B., Jin, C.J., Guan, D.X., et al., 2015. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biol. Biochem., 82, 112-118. https://doi.org/10.1016/j.soilbio.2015.01.001. Liang, X.Y., Zhang, T., Lu, X.K., et al., 2020. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Change Biol., 26, 3585-3600. https://doi.org/10.1111/gcb.15071. Liu, X.J., Duan, L., Mo, J.m., et al., 2011. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut., 159, 2251-2264. https://doi.org/10.1016/j.envpol.2010.08.002. Lu, P., Hao, T.x., Li, X., et al., 2021. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. J. Appl. Ecol., 58, 1888-1898. https://doi.org/10.1111/1365-2664.13858. Lu, X.H., Ju, W.M., Jiang, H., et al., 2019. Effects of nitrogen deposition on water use efficiency of global terrestrial ecosystems simulated using the IBIS model. Ecol. Indic., 101, 954-962. https://doi.org/10.1016/j.ecolind.2019.02.014. Lu, X.K., Mao, Q.G., Gilliam, F.S., et al., 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol., 20, 3790-3801. https://doi.org/10.1111/gcb.12665. Luo, M., Moorhead, D.L., Ochoa-Hueso, R., et al., 2022. Nitrogen loading enhances phosphorus limitation in terrestrial ecosystems with implications for soil carbon cycling. Funct. Ecol., 36, 2845-2858. https://doi.org/10.1111/1365-2435.14178. Ma, Z.Y., Liu, H.Y., Mi, Z.R., et al., 2017. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun., 8, 15378. https://doi.org/10.1016/j.agrformet.2021.108526. McCole, A.A., Stern, L.A., 2007. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol., 342, 238-248. https://doi.org/10.1016/j.jhydrol.2007.05.024. Midolo, G., Alkemade, R., Schipper, A.M., et al., 2019. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Glob. Ecol. Biogeogr., 28, 398-413. https://doi.org/10.1111/geb.12856. Pei, J.Y., Zheng, Y., Yu, Y., et al., 2024. Soil water regulates plant diversity response to gradual and step nitrogen addition. Plant Soil, 1-14. https://doi.org/10.1007/s11104-024-06938-7. Pei, Y.W., Huang, L.M., Zhang, Y.L., et al., 2023. Water use pattern and transpiration of Mongolian pine plantations in relation to stand age on northern Loess Plateau of China. Agric. For. Meteorol., 330, 109320. https://doi.org/10.1016/j.agrformet.2023.109320. Penuelas, J., Janssens, I.A., Ciais, P., et al., 2020. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol., 26, 1962-1985. https://doi.org/10.1111/gcb.14981. Polley, H.W., Wilsey, B.J., Derner, J.D., 2007. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos, 116, 2044-2052. https://doi.org/10.1111/j.2007.0030-1299.16080.x. Porporato, A., Daly, E., Rodriguez-Iturbe, I., 2004. Ecology. Am. Nat., 164, 625-632. https://doi.org/10.1086/424970. Prechsl, U.E., Burri, S., Gilgen, A.K., et al., 2015. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland. Oecologia, 177, 97-111. https://doi.org/10.1007/s00442-014-3092-6. Priyadarshini, K., Prins, H.H., de Bie, S., et al., 2016. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions. Ecohydrology, 9, 218-228. https://doi.org/10.1002/eco.1624. Reich, P.B., 2009. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402. https://doi.org/10.1126/science.1178820. Sala, O.E., Stuart Chapin, F., Armesto, J.J., et al., 2000. Global biodiversity scenarios for the year 2100. Sci. Total Environ., 287, 1770-1774. https://doi.org/10.1126/science.287.5459.1770. Sardans, J., Penuelas, J., 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol., 160, 1741-1761. https://doi.org/10.1104/pp.112.208785. Sasaki, T., Lauenroth, W.K., 2011. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768. https://doi.org/10.1007/s11104-023-05907-w. Schultz, N.M., Griffis, T.J., Lee, X., et al., 2011. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Commun. Mass Spectrom., 25, 3360-3368. https://doi.org/10.1002/rcm.5236. Shi, T.S., Collins, S.L., Yu, K., et al., 2024. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nat. Commun., 15, 3411. https://doi.org/10.1038/s41467-024-47829-w. Shi, Z.Y., Liu, W.Z., Guo, S.L., et al., 2003. Moisture properties in soil profiles and their relation to landform at Zhonglianchuan small watershed. Agric. Res. Arid Areas, 21, 101-104. Smith, M.D., Knapp, A.K., 2003. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett., 6, 509-517. https://doi.org/10.1046/j.1461-0248.2003.00454.x. Stevens, C.J., Dise, N.B., Mountford, J.O., et al., 2004. Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879. https://doi.org/10.1126/science.1094678. Stock, B., Semmens, B., 2013. MixSIAR GUI user manual v3. 1. https://conser.ver.iugocafe.org/user/brice.semmens/MixSIAR. Suding, K.N., Collins, S.L., Gough, L., et al., 2005. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. U. S. A., 102, 4387-4392. https://doi.org/10.1073/pnas.0408648102. Tian, Q.Y., Liu, N.N., Bai, W.M., et al., 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74. https://doi.org/10.1890/15-0917.1. Tian, Q.Y., Lu, P., Zhai, X.F., et al., 2022. An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss. Glob. Change Biol., 28, 3651-3664. https://doi.org/10.1111/gcb.16147. Tian, Q.Y., Yang, L.Y., Ma, P.F., et al., 2020. Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands. J. Ecol., 108, 1874-1887. https://doi.org/10.1111/1365-2745.13415. Valladares, F., Gianoli, E., Gomez, J.M., 2007. Ecological limits to plant phenotypic plasticity. New Phytol., 176, 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x. Wang, J., Fu, B.J., Jiao, L., et al., 2021. Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau. Agric. For. Meteorol., 301, 108344. https://doi.org/10.1016/j.agrformet.2021.108344. Wang, J., Fu, B.J., Lu, N., et al., 2019a. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agric. Ecosyst. Environ., 276, 55-63. https://doi.org/10.1016/j.agee.2019.02.015. Wang, J., Lu, N., Fu, B.J., 2019b. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Sci. Total Environ., 666, 685-693. https://doi.org/10.1016/j.scitotenv.2019.02.262. West, A.G., Goldsmith, G.R., Brooks, P.D., et al., 2010. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Commun. Mass Spectrom., 24, 1948-1954. https://doi.org/10.1002/rcm.4597. West, A.G., Patrickson, S.J., Ehleringer, J.R., 2006. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun. Mass Spectrom., 20, 1317-1321. https://doi.org/10.1002/rcm.2456. Wu, H.W., Li, X.Y., Jiang, Z.Y., et al., 2016. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China. Sci. Total Environ., 542, 182-191. https://doi.org/10.1016/j.scitotenv.2015.10.121. Xiao, Y., Liu, X., Zhang, L., et al., 2021. The allometry of plant height explains species loss under nitrogen addition. Ecol. Lett., 24, 553-562. https://doi.org/10.1111/1365-2745.13928. Yao, S.R., Hu, W.G., Ji, M.F., et al., 2024. Distribution, species richness, and relative importance of different plant life forms across drylands in China. Plant Diversity. https://doi.org/10.1016/j.pld.2024.09.007. Yu, G.C., Chen, J., Yu, M.X., et al., 2023. Eighteen-year nitrogen addition does not increase plant phosphorus demand in a nitrogen-saturated tropical forest. J. Ecol., 111, 1545-1560. https://doi.org/10.1111/1365-2745.14118. Zelikova, T.J., Blumenthal, D.M., Williams, D.G., et al., 2014. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc. Natl. Acad. Sci. U. S. A., 111, 15456-15461. https://doi.org/10.1073/pnas.1414659111. Zhan, X.Y., Bo, Y., Zhou, F., et al., 2017. Evidence for the importance of atmospheric nitrogen deposition to eutrophic Lake Dianchi, China. Environ. Sci. Technol., 51, 6699-6708. https://doi.org/10.1021/acs.est.6b06135. Zhang, R., Shen, H., Dong, S.K., et al., 2022. Effects of 5-year nitrogen addition on species composition and diversity of an alpine steppe plant community on Qinghai-Tibetan plateau. Plants, 11, 966. https://doi.org/10.3390/plants11070966. Zhao, M., Zhang, H.X., Baskin, C.C., et al., 2022. Intra-annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. J. Ecol., 110, 1942-1956. https://doi.org/10.1111/1365-2745.13928. Zheng, Y., Pei, J.Y., Fang, C., et al., 2023. Determining the harvest frequency to maintain grassland productivity and minimum nutrient removal from soil. Plant Soil, 487, 79-91. https://doi.org/10.1007/s11104-023-05907-w. Zhu, J.T., Zhang, Y.J., Yang, X., et al., 2020. Synergistic effects of nitrogen and CO2 enrichment on alpine grassland biomass and community structure. New Phytol., 228, 1283-1294. https://doi.org/10.1111/nph.16767. |
[1] | Jie Li (李捷), Xiao Pan Pang (庞晓攀), Zheng Gang Guo (郭正刚). Assessing the contributions of site and species to plant beta diversity in alpine grassland ecosystems [J]. Plant Diversity, 2025, 47(04): 633-642. |
[2] | Shuran Yao, Weigang Hu, Mingfei Ji, Abraham Allan Degen, Qiajun Du, Muhammad Adnan Akram, Yuan Sun, Ying Sun, Yan Deng, Longwei Dong, Haiyang Gong, Qingqing Hou, Shubin Xie, Xiaoting Wang, Jinzhi Ran, Bernhard Schmid, Qinfeng Guo, Karl J. Niklas, Jianming Deng. Distribution, species richness, and relative importance of different plant life forms across drylands in China [J]. Plant Diversity, 2025, 47(02): 273-281. |
[3] | Jianghua Duan, Liu Yang, Ting Tang, Jiesheng Rao, Wencong Liu, Xi Chen, Rong Li, Zehao Shen. Environment and management jointly shape the spatial patterns of plant species diversity of moist grasslands in the mountains of northeastern Yunnan [J]. Plant Diversity, 2024, 46(06): 744-754. |
[4] | Carlos A. Vargas, Marius Bottin, Tiina Sarkinen, James E. Richardson, Marcela Celis, Boris Villanueva, Adriana Sanchez. How to fill the biodiversity data gap: Is it better to invest in fieldwork or curation? [J]. Plant Diversity, 2024, 46(01): 39-48. |
[5] | Wei Wang, Kun Xin, Yujun Chen, Yuechao Chen, Zhongmao Jiang, Nong Sheng, Baowen Liao, Yanmei Xiong. Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity [J]. Plant Diversity, 2024, 46(01): 134-143. |
[6] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[7] | Fiona R. Worthy, Stefanie D. Goldberg, Sailesh Ranjitkar, Jian-Chu Xu. Seedling survival after simulating grazing and drought for two species from the Pamirs, northwestern China [J]. Plant Diversity, 2022, 44(06): 607-616. |
[8] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China [J]. Plant Diversity, 2022, 44(05): 436-444. |
[9] | Li-Shen Qian, Hong-Hua Shi, Xiao-Kun Ou, Hang Sun. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China [J]. Plant Diversity, 2022, 44(01): 20-29. |
[10] | Xiaoyang Song, Min Cao, Jieqiong Li, Roger L. Kitching, Akihiro Nakamura, Melinda J. Laidlaw, Yong Tang, Zhenhua Sun, Wenfu Zhang, Jie Yang. Different environmental factors drive tree species diversity along elevation gradients in three climatic zones in Yunnan, southern China [J]. Plant Diversity, 2021, 43(06): 433-443. |
[11] | Wen-Yun Chen, Tao Su. Asian monsoon shaped the pattern of woody dicotyledon richness in humid regions of China [J]. Plant Diversity, 2020, 42(03): 148-154. |
[12] | Kflay Gebrehiwot, Sebsebe Demissew, Zerihun Woldu, Mekbib Fekadu, Temesgen Desalegn, Ermias Teferi. Elevational changes in vascular plants richness, diversity, and distribution pattern in Abune Yosef mountain range, Northern Ethiopia [J]. Plant Diversity, 2019, 41(04): 220-228. |
[13] | Cyprien Miandrimanana, J. Leighton Reid, Tahiry Rivoharison, Chris Birkinshaw. Planting position and shade enhance native seedling performance in forest restoration for an endangered malagasy plant [J]. Plant Diversity, 2019, 41(02): 118-123. |
[14] | Matthew A. Albrecht, Quinn G. Long. Habitat suitability and herbivores determine reintroduction success of an endangered legume [J]. Plant Diversity, 2019, 41(02): 109-117. |
[15] | Mouldi Gamoun, Azaiez Ouled Belgacem, Mounir Louhaichi. Diversity of desert rangelands of Tunisia [J]. Plant Diversity, 2018, 40(05): 217-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||