Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 436-444.DOI: 10.1016/j.pld.2022.05.002
• Research paper • Previous Articles Next Articles
Wen-Jing Fanga,b, Qiong Caib, Qing Zhaob, Cheng-Jun Jib, Jiang-Ling Zhub, Zhi-Yao Tangb, Jing-Yun Fangb
Received:
2021-12-30
Revised:
2022-05-10
Online:
2022-10-14
Published:
2022-09-25
Supported by:
Wen-Jing Fanga,b, Qiong Caib, Qing Zhaob, Cheng-Jun Jib, Jiang-Ling Zhub, Zhi-Yao Tangb, Jing-Yun Fangb
通讯作者:
Zhi-Yao Tang,E-mail:zytang@urban.pku.edu.cn;Jing-Yun Fang,E-mail:jyfang@urban.pku.edu.cn
基金资助:
Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China[J]. Plant Diversity, 2022, 44(05): 436-444.
Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China[J]. Plant Diversity, 2022, 44(05): 436-444.
[1] Allen, A.P., Gillooly, J.F., Brown, J.H., 2007. Recasting the species-energy hypothesis:the different roles of kinetic and potential energy in regulating biodiversity. In:Storch, D., Marquet, P.A., Brown, J.H.(Eds.), Scaling Biodiversity. Cambridge University Press, Cambridge, pp. 283-299 [2] Araujo, M.B., Nogues-Bravo, D., Diniz-Filho, J.A.F, et al., 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8-15 [3] Brown, J.H., 2104. Why are there so many species in the tropics? J. Biogeogr. 41, 8-22 [4] Cheng, W.C., Fu, L.K.(Eds.), 1978. Flora Reipublicae Popularis Sinicae., Beijing, pp. 169-196 [5] Chu, C., Lutz, J.A., Kral, K., et al., 2018. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. https://doi.org/10.1111/ele.13175 [6] Currie, D.J., Mittelbach, G.G., Cornell, H.V., et al., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121-1134 [7] Fang, J.Y., Wang, X.P., Shen, Z.H., et al., 2009. Methods and protocols for plant community inventory. Biodivers. Sci. 17, 533-548 [8] Fang, J.Y., Shen, Z.H., Tang, Z.Y., et al., 2012. Forest community survey and the structural characteristics of forests in China. Ecography 35, 1059-1071 [9] Fang, W.J., Cai, Q., Zhu, J.L., et al., 2019. Distribution, community structures and species diversity of larch forests in North China.. 43, 742-752 [10] Farjon, A.(Eds.), 2010. A Handbook of the World's Conifers (2 Vols.)., Leiden, The Netherlands [11] Feng, J.M., 2008. Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodivers. Sci. 16, 470-476 [12] John, F., Sanford, W., 2019. An{R}Companion to Applied Regression, third ed. Thousand Oaks CA: [13] Gaston, K.J., 2000. Global patterns in biodiversity. Nature 405, 220-227 [14] Hakkenberg, C.R., Song, C., Peet, R.K., et al., 2016. Forest structure as a predictor of tree species diversity in the North Carolina Piedmont. J. Veg. Sci. 27, 1151-1163 [15] Harrison, S., Noss, R., 2017. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207-214 [16] Jetz, W., Rahbek, C., 2002. Geographic range size and determinants of avian species richness. Science 297, 1548-1551 [17] Kerr, J.T., Packer, L., 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252-254 [18] Kinlock, N.L., Prowant, L., Herstoff, E.M., et al., 2018. Explaining global variation in the latitudinal diversity gradient:eta-analysis confirms known patterns and uncovers new ones. 27, 125-141 [19] Kreft, H., Jetz, W., 2007. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U.S.A. 104, 5925-5930 [20] Liang, J.J., Crowther, T.W., Picard, N., et al., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 [21] Liu, Q.F., Liu, Y., Sun, X.L., et al., 2015.The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands. Biodivers. Sci. 23, 463-470 [22] Liu, Z.L., Fang, J.Y., Piao, S.L., 2002. Geographical distribution of species genera bies, icea and Larix in China. 57, 577-586 [23] Loidi, J., Chytr, M., Jimenez-Alfaro, B., et al., 2021. Life-form diversity across temperate deciduous forests of Western Eurasia:a different story in the understory. J. Biogeogr. 48, 2932-2945 [24] Lu, L.S., Cai, H.Y., Yang, Y., et al., 2018. Geographic patterns and environmental determinants of gymnosperm species diversity in China. Biodivers. Sci. 26, 1133-1146 [25] Alan, M., 2020. Leaps:Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps [26] Meng, X.Y., 2006. Forest Mensuration., Beijing [27] O'Brien, E.M., 1993. Climatic gradients in woody plant species richness:towards an explanation based on an analysis of southern Africa's woody flora. J. Biogeogr. 20, 181-198 [28] Oksanen, J., Blanchet, F. G., Friendly, M., et al., 2019. Vegan:community ecology package. R package version 2.5-6, https://doi.org/https://CRAN.R-project.org/package=vegan [29] Robert, J.H., 2020. Raster:geographic data analysis and modeling. R package version 3.1-5. https://CRAN.R-project.org/package=raster [30] Sandel, B., Arge, L., Dalsgaard, B., et al., 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660-664 [31] Shen, Z.H., Fang, J.Y., Chiu, C.A., et al., 2015.The geographical distribution and differentiation of Chinese beech forests and the association with Quercus. Appl. Veg. Sci. 18, 2002-2013 [32] Sundaram, M., Donoghue, M. J., Farjon, A., et al., 2019. Accumulation over evolutionary time as a major cause of biodiversity hotspots in conifers. Proc. Biol. Sci. 286, 20191887 [33] Sundaram, M., Leslie, A. B., 2021. The influence of climate and palaeoclimate on distributions of global conifer clades depends on geographical range size. J. Biogeogr. 48, 2286-2297 [34] Turner, J.R.G., 2004. Explaining the global biodiversity gradient:energy, area, history and natural selection. Basic Appl. Ecol. 5, 435-448 [35] Wang, S., Jimenez-Alfaro, B., Pan, S., et al., 2021. Differential responses of forest strata species richness to paleoclimate and forest structure. 499, 119605 [36] Wang, X.P., Fang, J.Y., Sanders, N.J., et al., 2009b. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32, 133-142 [37] Wang, Z.H., Tang, Z.Y., Fang, J.Y., 2009a. The species-energy hypothesis as a mechanism for species richness patterns. Biodivers. Sci. 17, 613-624 [38] Warton, D., Duursma, R., Falster, D., et al., 2012. 3-an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257-259 [39] Whittaker, R.J., Willis, K.J., Field, R., 2001. Scale and species richness:towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453-470 [40] Willig, M.R., Kaufman, D.M., Stevens, R.D., 2003. Latitudinal gradients of biodiversity:pattern, process, scale, and synthesis. 34, 273-309 [41] Wu, A.C., Deng, X.W., Ren, X.L., et al., 2018. Biogeography patterns and influencing factors of in the species diversity of tree layer community in typical forest ecosystems in China. 38, 7727-7738 [42] Wu, X., Wang, X.P., Tang, Z.Y., et al., 2014. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography 38, 602-613 [43] Yang, Y., Wang, Z.H., Xu, X.T., 2017. Taxonomy and Distribution of Global Gymnosperms., Shanghai [44] Zhong, Y.L., Chu, C.J., Myers, J.A., et al., 2021. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137. https://doi.org/10.1038/s41467-021-23236-3 |
[1] | Mustaqeem Ahmad, Ya-Huang Luo (罗亚皇), Sonia Rathee, Robert A. Spicer, Jian Zhang (张健), Moses C. Wambulwa, Guang-Fu Zhu (朱光福), Marc W. Cadotte, Zeng-Yuan Wu (吴增源), Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li (李德铢), Jie Liu (刘杰). Multifaceted plant diversity patterns across the Himalaya: Status and outlook [J]. Plant Diversity, 2025, 47(04): 529-543. |
[2] | Fei-Fei Li, Qiang Hao, Xia Cui, Ruo-Zhu Lin, Bin-Sheng Luo, Jin-Shuang Ma. Global invasive alien plant management lists: Assessing current practices and adapting to new demands [J]. Plant Diversity, 2025, 47(04): 666-680. |
[3] | Ziwei Chen, Dongsheng Zhao, Siqi Deng, Yu Zhu, Ke Wang, Shunsheng Wang, Du Zheng. Resistance of plant diversity to road disturbance: Evidence from the Tibetan Plateau [J]. Plant Diversity, 2025, 47(03): 394-402. |
[4] | Fu-Qiang Huang, Josep Peñuelas, Jordi Sardans, Scott L. Collins, Kai-Liang Yu, Man-Qiong Liu, Jiu-Ying Pei, Wen-Bin Ke, Jian-Sheng Ye. Plant use of water across soil depths regulates species dominance under nitrogen addition [J]. Plant Diversity, 2025, 47(03): 479-488. |
[5] | Shuran Yao, Weigang Hu, Mingfei Ji, Abraham Allan Degen, Qiajun Du, Muhammad Adnan Akram, Yuan Sun, Ying Sun, Yan Deng, Longwei Dong, Haiyang Gong, Qingqing Hou, Shubin Xie, Xiaoting Wang, Jinzhi Ran, Bernhard Schmid, Qinfeng Guo, Karl J. Niklas, Jianming Deng. Distribution, species richness, and relative importance of different plant life forms across drylands in China [J]. Plant Diversity, 2025, 47(02): 273-281. |
[6] | Jian Zhang, Hong Qian, Xinyang Wang. An online version and some updates of R package U.Taxonstand for standardizing scientific names in plant and animal species [J]. Plant Diversity, 2025, 47(01): 166-168. |
[7] | José Luiz Alves Silva, Alexandre Souza, Angela Pierre Vitória. Detection of functional diversity gradients and their geoclimatic filters is sensitive to data types (occurrence vs. abundance) and spatial scales (sites vs. regions) [J]. Plant Diversity, 2024, 46(06): 732-743. |
[8] | Yanwei Guan, Yongru Wu, Zheng Cao, Zhifeng Wu, Fangyuan Yu, Haibin Yu, Tiejun Wang. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity [J]. Plant Diversity, 2024, 46(05): 565-574. |
[9] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains [J]. Plant Diversity, 2024, 46(05): 661-670. |
[10] | Xu Chen, Haining Lu, Zhengru Ren, Yuqiu Zhang, Ruoxuan Liu, Yunhai Zhang, Xingguo Han. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland [J]. Plant Diversity, 2024, 46(02): 256-264. |
[11] | Carlos A. Vargas, Marius Bottin, Tiina Sarkinen, James E. Richardson, Marcela Celis, Boris Villanueva, Adriana Sanchez. How to fill the biodiversity data gap: Is it better to invest in fieldwork or curation? [J]. Plant Diversity, 2024, 46(01): 39-48. |
[12] | Wenjing Fang, Qiong Cai, Chengjun Ji, Jiangling Zhu, Zhiyao Tang, Jingyun Fang. Life forms affect beta-diversity patterns of larch forests in China [J]. Plant Diversity, 2024, 46(01): 49-58. |
[13] | Shi-Guang Wei, Lin Li, Kun-Dong Bai, Zhi-Feng Wen, Jing-Gang Zhou, Qin Lin. Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China: 2005 to 2020 [J]. Plant Diversity, 2024, 46(01): 70-77. |
[14] | Wei Wang, Kun Xin, Yujun Chen, Yuechao Chen, Zhongmao Jiang, Nong Sheng, Baowen Liao, Yanmei Xiong. Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity [J]. Plant Diversity, 2024, 46(01): 134-143. |
[15] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||