[1] Kumaravel K, Ravichandran S, Balasubramanian T, Sonneschein L. Seahorses - a source of traditional medicine. Nat Prod Res. 2012;26:2330-4. https://doi.org/10.1080/14786419.2012.662650. [2] Sanaye SV, Pise NM, Pawar AP, Parab PP, Sreepada RA, Pawar HB, et al. Total phenolic content and in-vitro antioxidant activities from methanolic extract of alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785). Indian J Geo-Mar Sci. 2015;44:1352-7. [3] Sanaye SV, Pawar AP, Rivonker CU, Sreepada RA, Ansari ZA, Ram A. Biochemical composition of the alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785). Chin J Oceanol Limnol. 2017;35:1501-10. https://doi.org/10.1007/s00343-017-6070-0. [4] Lee C, Kim SC, Park C. Protective effect of marine natural products against UVB-induced damages in human skin fibroblast via antioxidant mechanism. J Soc Cosmet Scientists Korea. 2010;1:79-87. [5] Lee C, Park C. Inhibitory effects of marine natural products on melanogenesis in B16 melanoma cells B16. Korea J Herbol. 2012;4:73-80. [6] Okamoto R, Izumi M, Kajihara Y. Decoration of proteins with sugar chains: recent advances in glycoprotein synthesis. Curr Opin Chem Biol. 2014;22:92-9. https://doi.org/10.1016/j.cbpa.2014.09.029. [7] Zheng J, Wang H, Deng Z, Shan Y, Lu X, Zhao X. Structure and biological activities of glycoproteins and their metabolites in maintaining intestinal health. Crit Rev Food Sci Nutr. 2023;63:3346-61. https://doi.org/10.1080/10408398.2021.1987857. [8] Zhong Y, Zhu J, Zhu B, Yin H, Wang D, Deng Y, et al. Recent advances in the structure and immunomodulatory activity of food-derived glycoprotein complex. J Future Foods. 2025. https://doi.org/10.1016/j.jfutfo.2024.11.002. [9] Nie S, Xie M, Fu Z, Wan Y, Yan A. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr Polym. 2008;71:626-33. https://doi.org/10.1016/j.carbpol.2007.07.005. [10] Deng X, Li X, Luo S, Zheng Y, Luo X, Zhou L. Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: an in vitro and in vivo study. Food Nutr Res. 2017;61:1399770. https://doi.org/10.1080/16546628.2017.1399770. [11] Zhang H, Cai X, Tian Q, Xiao L, Zeng Z, Cai X, et al. Microwave-assisted degradation of polysaccharide from Polygonatum sibiricum and antioxidant activity. J Food Sci. 2019;84:754-61. https://doi.org/10.1111/1750-3841.14449. [12] Wang L, Chen L, Li J, Di L, Wu H. Structural elucidation and immune-enhancing activity of peculiar polysaccharides fractioned from marine clam Meretrix meretrix (Linnaeus). Carbohyd Polym. 2018;201:500-13. https://doi.org/10.1016/j.carbpol.2018.08.106. [13] Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res. 2011;346:2769-76. https://doi.org/10.1016/j.carres.2011.09.034. [14] Yao Y, Yao J, Du Z, Wang P, Ding K. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydr Polym. 2018;202:134-42. https://doi.org/10.1016/j.carbpol.2018.08.098. [15] Rostami Z, Tabarsa M, You S, Rezaei M. Structural characterization and RAW264.7 murine macrophage stimulating activity of a fucogalactoglucan from Colpomenia peregrina. J Food Sci Technol. 2018;55:4650-60. https://doi.org/10.1007/s13197-018-3406-5. [16] Luo B, Dong LM, Xu QL, Zhang Q, Liu WB, Wei XY, et al. Characterization and immunological activity of polysaccharides from Ixeris polycephala. Int J Biol Macromol. 2018;113:804-12. https://doi.org/10.1016/j.ijbiomac.2018.02.165. [17] You J, Chang Y, Zhao D, Zhuang J, Zhuang W. A mixture of functional complex extracts from Lycium barbarum and grape seed enhances immunity synergistically in vitro and in vivo. J Food Sci. 2019;84:1577-85. https://doi.org/10.1111/1750-3841.14611. [18] Wang Y, Han S, Li R, Cui B, Ma X, Qi X, et al. Structural characterization and immunological activity of polysaccharides from the tuber of Bletilla striata. Int J Biol Macromol. 2019;122:628-35. https://doi.org/10.1016/j.ijbiomac.2018.10.201. [19] Rafiquzzaman SM, Kim E, Kim Y, Nam T, Kong I. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. Int J Biol Macromol. 2013;62:265-72. https://doi.org/10.1016/j.ijbiomac.2013.09.009. [20] Qin Y, Yuan Q, Zhang Y, Li J, Zhu X, Zhao L, et al. Enzyme-assisted extraction optimization, characterization and antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus. Molecules. 2018. https://doi.org/10.3390/molecules23030590. [21] Hao H, Han Y, Yang L, Hu L, Duan X, Yang X, et al. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int J Biol Macromol. 2019;134:891-900. https://doi.org/10.1016/j.ijbiomac.2019.05.084. [22] Yuan Q, Zhao L, Cha Q, Sun Y, Ye H, Zeng X. Structural characterization and immunostimulatory activity of a homogeneous polysaccharide from Sinonovacula constricta. J Agric Food Chem. 2015;63:7986-94. https://doi.org/10.1021/acs.jafc.5b03306. [23] Hesse A, Weller MG. Protein quantification by derivatization-free high-performance liquid chromatography of aromatic amino acids. J Amino Acids. 2016;2016:7374316. https://doi.org/10.1155/2016/7374316. [24] Maehre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen IJ. Protein determination-method matters. 2018. Foods. https://doi.org/10.3390/foods7010005. [25] Li D, Zhang P, Li F, Chi L, Zhu D, Zhang Q, et al. Recognition of N - glycoforms in human chorionic gonadotropin by monoclonal antibodies and their interaction motifs. J Biol Chem. 2015;290:22715-23. https://doi.org/10.1074/jbc.M115.657072. [26] Wang X, Zhang Z, Wu Y, Sun X, Xu N. Synthesized sulfated and acetylated derivatives of polysaccharide extracted from Gracilariopsis lemaneiformis and their potential antioxidant and immunological activity. Int J Biol Macromol. 2019;124:568-72. https://doi.org/10.1016/j.ijbiomac.2018.11.244. [27] Cui F, Zan X, Li Y, Yang Y, Sun W, Zhou Q, et al. Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa. Int J Biol Macromol. 2013;62:684-90. https://doi.org/10.1016/j.ijbiomac.2013.10.025. [28] Zhou Y, Ma Y, Li L, Yang X. Purification, characterization, and functional properties of a novel glycoprotein from tartary buckwheat (Fagopyrum tartaricum) seed. Food Chem. 2020;309:125671. https://doi.org/10.1016/j.foodchem.2019.125671. [29] Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia HR, Fujiwara T, et al. Biological magnetic resonance data bank. Nucleic Acids Res. 2023;51(D1):D368-76. https://doi.org/10.1093/nar/gkac1050. [30] Kang J, Cui SW, Guo Q, Chen J, Wang Q, Phillips GO, et al. Structural investigation of a glycoprotein from gum ghatti. Carbohydr Polym. 2012;89:749-58. https://doi.org/10.1016/j.carbpol.2012.04.004. [31] Vasile F, Gubinelli F, Panigada M, Soprana E, Siccardi A, Potenza D. NMR interaction studies of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GIcNAc with influenza-virus hemagglutinin expressed in transfected human cells. Glycobiology. 2018;28:42-9. https://doi.org/10.1093/glycob/cwx092. [32] Shi Z, Li S, Wei Z, Wang Y, Zhou N, Ma Q, et al. Immunomodulatory activity of glycoproteins isolated from chickpea (Cicer arietinum L.). Front Nutr. 2022;9:966705. https://doi.org/10.3389/fnut.2022.966705. [33] Hu C, Li J, Yang D, Pan Y, Wan H. A neuroprotective polysaccharide from Hyriopsis cumingii. J Nat Prod. 2010;73:1489-93. https://doi.org/10.1021/np1001847. [34] Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS. Amino acid selective labeling and unlabeling for protein resonance assignments. Isot Label Biomol Nmr. 2012;992:95-118. https://doi.org/10.1007/978-94-007-4954-2_6. [35] Garay PG, Martin OA, Scheraga HA, Vila JA. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: a quantum-chemical study. PeerJ. 2016;4:e2253. https://doi.org/10.7717/peerj.2253. [36] Zhang M, Ou X, Shi H, Huang W, Song L, Zhu J, et al. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: a review. Int J Biol Macromol. 2023;244:125406. https://doi.org/10.1016/j.ijbiomac.2023.125406. [37] Barbosa JDS, Costa MSSP, de Melo LFM, de Medeiros MJC, de Pontes DL, Scortecci KC, et al. In vitro immunostimulating activity of sulfated polysaccharides from Caulerpa cupressoides var. Flabellata. Mar Drugs. 2019. https://doi.org/10.3390/md17020105. [38] Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525-63. https://doi.org/10.1124/pr.110.002907. [39] Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol. 2019;37:325-47. https://doi.org/10.1146/annurev-immunol-051116-052406. [40] Costales MG, Alam MS, Cavanaugh C, Williams KM. Extracellular adenosine produced by ecto-5’-nucleotidase (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. Nitric Oxide-Biol Ch. 2018;72:7-15. https://doi.org/10.1016/j.niox.2017.11.001. [41] Yang L, Li A, Yu W, Wang H, Zhang L, Wang D, et al. Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer. Drug Resist Updat. 2025;78:101175. https://doi.org/10.1016/j.drup.2024.101175. [42] Hering M, Madi A, Sandhoff R, Ma S, Wu J, Mieg A, et al. Sphinganine recruits TLR4 adaptors in macrophages and promotes inflammation in murine models of sepsis and melanoma. Nat Commun. 2024;15:6067. https://doi.org/10.1038/s41467-024-50341-w. [43] Hanna VS, Hafez E. Synopsis of arachidonic acid metabolism: a review. J Adv Res. 2018;11:23-32. https://doi.org/10.1016/j.jare.2018.03.005. [44] Wang T, Fu X, Chen Q, Patra JK, Wang D, Wang Z, et al. Arachidonic acid metabolism and kidney inflammation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20153683. [45] Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111:5821-65. https://doi.org/10.1021/cr2002992. [46] Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther. 2004;103:147-66. https://doi.org/10.1016/j.pharmthera.2004.06.003. [47] Tsai HH, Lee WR, Wang PH, Cheng KT, Chen YC, Shen SC. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. J Dermatol Sci. 2013;69(2):122-31. https://doi.org/10.1016/j.jdermsci.2012.10.009. [48] Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F, Bramanti P, et al. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol. 2010;161:555-70. https://doi.org/10.1111/j.1476-5381.2010.00930.x. [49] Diaz-Munoz MD, Osma-Garcia IC, Iniguez MA, Fresno M. Cyclooxygenase-2 deficiency in macrophages leads to defective p110gamma PI3K signaling and impairs cell adhesion and migration. J Immunol. 2013;191:395-406. https://doi.org/10.4049/jimmunol.1202002. [50] Stitham J, Midgett C, Martin KA, Hwa J. Prostacyclin: an inflammatory paradox. Front Pharmacol. 2011;2:24. https://doi.org/10.3389/fphar.2011.00024. [51] Pan XY, Wang L, You HM, Cheng M, Yang Y, Huang C, et al. Alternative activation of macrophages by prostacyclin synthase ameliorates alcohol induced liver injury. Lab Invest. 2021;101:1210-24. https://doi.org/10.1038/s41374-021-00531-7. [52] Chen Y, Shen Y, Nie Y, Chen Z, Wang H, Liao H, et al. Leptin upregulates COX-2 and its downstream products in aortic endothelial cells. Exp Ther Med. 2017;14:5097-102. https://doi.org/10.3892/etm.2017.5177. [53] Wallace AE, Catalano RD, Anderson RA, Jabbour HN. Chemokine (C-C) motif ligand 20 is regulated by PGF2α-F-prostanoid receptor signalling in endometrial adenocarcinoma and promotes cell proliferation. Mol Cell Endocrinol. 2011;331:129-35. https://doi.org/10.1016/j.mce.2010.08.018. [54] Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther. 2022;240:108213. https://doi.org/10.1016/j.pharmthera.2022.108213. [55] Tang S, Tan J, Yang S, Li A, Liu J, Zhang W, et al. Paricalcitol ameliorates diabetic nephropathy by promoting EETs and M2 macrophage polarization and inhibiting inflammation by regulating VDR/CYP2J2 axis. FASEB J. 2024;38:e70108. https://doi.org/10.1096/fj.202401489R. [56] Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285:1276-9. https://doi.org/10.1126/science.285.5431.1276. [57] Li X, Kempf S, Gunther S, Hu J, Fleming I. 11,12-EET regulates PPAR-gamma expression to modulate TGF-beta-mediated macrophage polarization. Cells-Basel. 2023. https://doi.org/10.3390/cells12050700. [58] Wang X, Li L, Wang H, Xiao F, Ning Q. Epoxyeicosatrienoic acids alleviate methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in mice. Scand J Immunol. 2019;90:e12791. https://doi.org/10.1111/sji.12791. [59] Ontko CD, Capozzi ME, Kim MJ, McCollum GW, Penn JS. Cytochrome P450-epoxygenated fatty acids inhibit Muller glial inflammation. Sci Rep-Uk. 2021;11:9677. https://doi.org/10.1038/s41598-021-89000-1. [60] Spiecker M, Liao JK. Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. Arch Biochem Biophys. 2005;433:413-20. https://doi.org/10.1016/j.abb.2004.10.009. [61] Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res. 2001;89:753-62. https://doi.org/10.1161/hh2101.099268. [62] Simon GM, Cravatt BF. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem. 2008;283:9341-9. https://doi.org/10.1074/jbc.M707807200. [63] Hunter E, Stander M, Kossmann J, Chakraborty S, Prince S, Peters S, et al. Toward the identification of a phytocannabinoid-like compound in the flowers of a South African medicinal plant (Leonotis leonurus). BMC Res Notes. 2020;13:522. https://doi.org/10.1186/s13104-020-05372-z. [64] Mechoulam R. A delightful trip along the pathway of cannabinoid and endocannabinoid chemistry and pharmacology. Annu Rev Pharmacol. 2023;63:1-13. https://doi.org/10.1146/annurev-pharmtox-051921-083709. [65] Kogan NM, Begmatova D, Vinnikova L, Malitsky S, Itkin M, Sharon E, et al. Endocannabinoid basis of personality-insights from animal model of social behavior. Front Pharmacol. 2023;14:1234332. https://doi.org/10.3389/fphar.2023.1234332. [66] Oh S, Choi YK, Lee S. Pattern recognition receptors and inflammasome: now and beyond. Mol Cells. 2025;48:100239. https://doi.org/10.1016/j.mocell.2025.100239. [67] Guo M, Meng M, Zhao J, Wang X, Wang C. Immunomodulatory effects of the polysaccharide from Craterellus cornucopioides via activating the TLR4-NFkappaB signaling pathway in peritoneal macrophages of BALB/c mice. Int J Biol Macromol. 2020;160:871-9. https://doi.org/10.1016/j.ijbiomac.2020.05.270. [68] Zhao M, Qin S, Wang J, Zheng S, Ma X, Xu W. Cirsii Herba glycoprotein promotes macrophage M1 polarization through MAPK and NF-κB signaling pathways via interaction with TLR4. Int J Biol Macromol. 2025;296:139687. https://doi.org/10.1016/j.ijbiomac.2025.139687. [69] Khan SA, Ilies MA. The phospholipase A2 superfamily: structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021353. |