Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (6): 61-61.DOI: 10.1007/s13659-025-00545-4
• Review • Previous Articles Next Articles
Nosiba A. Alsarayrah1, Rafeezul Mohamed2, Eshaifol A. Omar1
Received:2025-01-19
Online:2026-01-12
Contact:
Eshaifol A. Omar Email:E-mail:eshaifol@usm.my
Supported by:Nosiba A. Alsarayrah1, Rafeezul Mohamed2, Eshaifol A. Omar1
通讯作者:
Eshaifol A. Omar Email:E-mail:eshaifol@usm.my
基金资助:Nosiba A. Alsarayrah, Rafeezul Mohamed, Eshaifol A. Omar. Stingless bee propolis: a comprehensive review of chemical constituents and health efficacy[J]. Natural Products and Bioprospecting, 2025, 15(6): 61-61.
Nosiba A. Alsarayrah, Rafeezul Mohamed, Eshaifol A. Omar. Stingless bee propolis: a comprehensive review of chemical constituents and health efficacy[J]. 应用天然产物, 2025, 15(6): 61-61.
| [1] Ga MELO. Stingless bees (meliponini). Switzerland: Springer; 2020. [2] Asem N, Abdul Gapar NA, Abd Hapit NH, et al. Correlation between total phenolic and flavonoid contents with antioxidant activity of Malaysian stingless bee propolis extract. J Apic Res. 2020;59(4):437-42. https://doi.org/10.1080/00218839.2019.1684050. [3] Hamzah SA, Zawawi N, Sabri S. A review on the association of bacteria with stingless bees. Sains Malaysiana. 2020. https://doi.org/10.17576/jsm-2020-4908-08. [4] Ristivojevi? P, Trifkovi? J, Andri? F, et al. Poplar-type propolis: chemical composition, botanical origin and biological activity. Nat Prod Commun. 2015;10(11): 1934578X1501001117. https://doi.org/10.1177/1934578X1501001117. [5] Machado B, Pulcino TN, Silva AL, et al. Propolis as an alternative in prevention and control of dental cavity. J Apither. 2017. https://doi.org/10.5455/ja.20160726115117. [6] Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Complemen Altern Med. 2013. https://doi.org/10.1155/2013/964149. [7] Sung S-H, Choi G-H, Lee N-W, et al. External use of propolis for oral, skin, and genital diseases: a systematic review and meta-analysis. Evid Complement Altern Med. 2017. https://doi.org/10.1155/2017/8025752. [8] Elnakady YA, Rushdi AI, Franke R, et al. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci Rep. 2017. https://doi.org/10.1038/srep41453. [9] Martinotti S, Ranzato E. Propolis: a new frontier for wound healing? Burns Trauma. 2015;3(1):1-7. https://doi.org/10.1186/s41038-015-0010-z. [10] Vd WAGH. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Pharm Sci. 2013. https://doi.org/10.1155/2013/308249. [11] Stawiarz E, Dyduch J. The use of honey bee products of plant origin in apitherapy. Episteme. 2014;25:111-27. [12] Matuszewska E, Klupczynska A, Macio?ek K, et al. Multielemental analysis of bee pollen, propolis, and royal jelly collected in west-central Poland. Molecules. 2021;26(9):2415. https://doi.org/10.3390/molecules26092415. [13] Ahangari Z, Naseri M, Vatandoost F. Propolis: chemical composition and its applications in endodontics. Iran Endod J. 2018;13(3):285. https://doi.org/10.22037/iej.v13i3.20994. [14] Pasupuleti VR, Sammugam L, Ramesh N, et al. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Long. 2017. https://doi.org/10.1155/2017/1259510. [15] Hayriye A. Effects of propolis on immune system. Anadolu Ege Tar?msal Ara?t?rma Enstitüsü Dergisi, 2018. 28(2): 99-104. https://dergipark.org.tr/en/pub/anadolu/issue/41816/504495. [16] Krol W, Scheller S, Czuba Z, et al. Inhibition of neutrophils’ chemiluminescence by ethanol extract of propolis (EEP) and its phenolic components. J Ethnopharmacol. 1996;55(1):19-25. https://doi.org/10.1016/s0378-8741(96)01466-3. [17] Kapare HS, Sathiyanarayanan L. Nutritional and therapeutic potential of propolis: a review. Res J Pharm Technol. 2020;13(7):3545-9. https://doi.org/10.5958/0974-360X.2020.00627.7. [18] Hodel KVS, Machado BAS, Santos NR, et al. Metal content of nutritional and toxic value in different types of brazilian propolis. Sci World J. 2020;2020(1):4395496. https://doi.org/10.1155/2020/4395496. [19] Pobiega K, Kot AM, Przyby? JL, et al. Comparison of the chemical composition and antioxidant properties of propolis from urban apiaries. Molecules. 2023;28(18): 6744. https://doi.org/10.3390/molecules28186744. [20] Moskwa J, Naliwajko SK, Markiewicz-?ukowska R, et al. Propolis from poland versus propolis from new zealand-chemical composition and antiproliferative properties on glioblastoma cell lines. 2020. [21] Maroof K, Gan SH. A review on chemical compositions, biological activity and formulation techniques of Malaysian honey bee and meliponine propolis. J Biol Act Prod Nat. 2020;10(6):507-23. https://doi.org/10.1080/22311866.2020.1856716. [22] Pilario KE, Tielemans A, Mojica E-RE. Geographical discrimination of propolis using dynamic time warping kernel principal components analysis. Expert Syst App. 2022. https://doi.org/10.1016/j.eswa.2021.115938. [23] Chi Y, Luo L, Cui M, et al. Chemical composition and antioxidant activity of essential oil of Chinese propolis. Chem Biodivers. 2020. https://doi.org/10.1002/cbdv.201900489. [24] Massaro CF, Simpson JB, Powell D, et al. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Sci Nat. 2015;102:1-11. https://doi.org/10.1007/s00114-015-1318-z. [25] El-Guendouz S, Lyoussi B, Miguel MG. Insight on propolis from mediterranean countries: chemical composition, biological activities and application fields. Chem Biodiv. 2019. https://doi.org/10.1002/cbdv.201900094. [26] Oliveira L, Macedo M, Rodrigues J, et al. Plant metabolite 5-pentadecyl resorcinol is produced by the amazonian fungus penicillium sclerotiorum lm 5679. Braz J Biol. 2021. https://doi.org/10.1590/1519-6984.241863. [27] Romagnoli C, Baldisserotto A, Vicentini CB, et al. Antidermatophytic action of resorcinol derivatives: ultrastructural evidence of the activity of phenylethyl resorcinol against microsporum gypseum. Molecules. 2016;21(10): 1306. https://doi.org/10.3390/molecules21101306. [28] Zhang Y-J, Chen X, Zhang L, et al. Protective effects of 3, 4-dihydroxyphenylethanol on spinal cord injury-induced oxidative stress and inflammation. NeuroReport. 2019;30(15):1016-24. https://doi.org/10.1097/wnr.0000000000001318. [29] Shehata MG, Ahmad FT, Badr AN, et al. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann Agric Sci. 2020;65(2):209-17. https://doi.org/10.1016/j.aoas.2020.12.001. [30] Harbatsevich H, Loginova N, Nabebina K, et al. Nickel (ii) complexes with ‘non innocent’ligands-cycloaminomethyl derivatives of 1, 2-dihydroxybenzene: sod-like and antimicrobial activity. RAD Assoc J. 2017;2(2):129-33. https://doi.org/10.21175/RadJ.2017.02.027. [31] Krishna CM, Liebmann JE, Kaufman D, et al. The catecholic metal sequestering agent 1, 2-dihydroxybenzene-3, 5-disulfonate confers protection against oxidative cell damage. Arch Biochem Biophys. 1992;294(1):98-106. https://doi.org/10.1016/0003-9861(92)90142-j. [32] Kerdsomboon K, Chumsawat W, Auesukaree C. Effects of moringa oleifera leaf extracts and its bioactive compound gallic acid on reducing toxicities of heavy metals and metalloid in saccharomyces cerevisiae. Chemosphere. 2021;270: 128659. https://doi.org/10.1016/j.chemosphere.2020.128659. [33] Wu Y, Li K, Zeng M, et al. Serum metabolomics analysis of the anti-inflammatory effects of gallic acid on rats with acute inflammation. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.830439. [34] Ismail T, Sulaiman SA, Ponnuraj KT, et al. Chemical constituents of malaysian apis mellifera propolis. Sains Malays. 2018. https://doi.org/10.17576/jsm-2018-4701-14. [35] Deng Z, Li C, Luo D, et al. A new cinnamic acid derivative from plant-derived endophytic fungus pyronema sp. Nat Prod Res. 2017;31(20):2413-9. https://doi.org/10.1080/14786419.2017.1311890. [36] Lan J-S, Hou J-W, Liu Y, et al. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing n-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32(1):776-88. https://doi.org/10.1080/14756366.2016.1256883. [37] Amalan V, Vijayakumar N, Ramakrishnan A. P-coumaric acid regulates blood glucose and antioxidant levels in streptozotocin induced diabetic rats. J Chem Pharm Res. 2015;7(7):831-9. https://doi.org/10.3390/metabo12121166. [38] Muhammad N, Saeed M, Adhikari A, et al. Isolation of a new bioactive cinnamic acid derivative from the whole plant of viola betonicifolia. J Enzyme Inhib Med Chem. 2013;28(5):997-1001. https://doi.org/10.3109/14756366.2012.702344. [39] Keshari AK, Verma AK, Kumar T, et al. Oxidative stress: a review. Int J Sci Technol. 2015;3(7):155. [40] Singh P, Grewal AS, Pandita D, et al. Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. Future J Pharm Sci. 2018;4(2):124-30. https://doi.org/10.1016/j.fjps.2017.11.002. [41] Sun J, Ran Y, Wang Y, et al. Synthesis of bioisosteres of caffeic acid phenethyl ester: 1, 3, 4-oxadiazole derivatives containing a catechol fragment with anti-inflammatory activities in vitro and in vivo. Bioorg Chem. 2025;155:108-23. https://doi.org/10.1016/j.bioorg.2025.108123. [42] Falc?o SI, Vale N, Gomes P, et al. Phenolic profiling of portuguese propolis by lc-ms spectrometry: uncommon propolis rich in flavonoid glycosides. Phytochem Anal. 2013;24(4):309-18. https://doi.org/10.1002/pca.2412. [43] Adeyemi OS, Atolani O, Banerjee P, et al. Computational and experimental validation of antioxidant properties of synthesized bioactive ferulic acid derivatives. Int J Food Prop. 2018;21(1):86-98. https://doi.org/10.1080/10942912.2018.1439958. [44] Wu Z, Zhang J, Chen J, et al. Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester derivatives containing quinazoline moiety. Pest Manag Sci. 2017;73(10):2079-89. https://doi.org/10.1002/ps.4579. [45] Stompor-Gor?cy M, Machaczka M. Recent advances in biological activity, new formulations and prodrugs of ferulic acid. Int J Mol Sci. 2021;22(23):12889. https://doi.org/10.3390/ijms222312889. [46] Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6):1305. https://doi.org/10.3390/ijms20061305. [47] Ibrahim N, Niza N, Rodi MM, et al. Chemical and biological analyses of malaysian stingless bee propolis extracts. Malays J Anal Sci. 2016. https://doi.org/10.17576/mjas-2016-2002-26. [48] Sabatier S, Amiot M, Tacchini M, et al. Identification of flavonoids in sunflower honey. J Food Sci. 1992;57(3):773-4. https://doi.org/10.1021/jf991166q. [49] Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11(10):2288. https://doi.org/10.3390/nu11102288. [50] Rasul A, Millimouno FM, Ali Eltayb W, et al. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res Int. 2013. https://doi.org/10.1155/2013/379850. [51] Lambert JD, Sang S, Hong J, et al. Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab Dispos. 2006;34(12):2111-6. https://doi.org/10.1124/dmd.106.011460. [52] Rasheed S, Rehman K, Shahid M, et al. Therapeutic potentials of genistein: new insights and perspectives. J Food Biochem. 2022. https://doi.org/10.1111/jfbc.14228. [53] Okińczyc P, Widelski J, Nowak K, et al. Phytochemical profiles and antimicrobial activity of selected Populus spp. bud extracts. Molecules. 2024;29(2): 437. https://doi.org/10.3390/molecules29020437. [54] Nwiloh BI, Monago-Ighorodje CC, Onwubiko GN. Analyses of bioactive compounds in fiddleheads of pteridium aquilinum l. Kuhn collected from khana, southern nigeria, using gas chromatography-flame ionization detector. J Pharmacogn Phytochem. 2020;9(2):1079-86. [55] Stabrauskiene J, Kopustinskiene DM, Lazauskas R, et al. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines. 2022;10(7): 1686. https://doi.org/10.3390/biomedicines10071686. [56] Liu W, Zheng W, Cheng L, et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Nat Prod Bioprospect. 2022;12(1): 4. https://doi.org/10.1007/s13659-022-00325-4. [57] Silva CCFD, Salatino A, Motta LBD, et al. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. Rev Bras Farmacogn. 2019;29:309-18. https://doi.org/10.1016/j.bjp.2019.04.001. [58] Gharacheh RH, Eslami M, Amani P, et al. Tacrine-flavonoid quercetin hybride as a mtdl ligand against alzheimer’s disease with metal chelating and ache, bche, ache-induced aβ aggregation inhibition properties: a computational study. J Arch. 2020. https://doi.org/10.22036/pcr.2019.183077.1624. [59] Xiao Z-P, Wang X-D, Wang P-F, et al. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem. 2014;80:92-100. https://doi.org/10.1016/j.ejmech.2014.04.037. [60] Unver T. Isorhamnetin as a promising natural bioactive flavonoid: in vitro assessment of its antifungal property. Int J Agric Environ Food Sci. 2024;8(1):54-61. https://doi.org/10.31015/jaefs.2024.1.6. [61] Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion complexes as potent anticancer metallodrugs: a comprehensive review. Mini Rev Med Chem. 2024;24(10):1046-60. https://doi.org/10.2174/0113895575273658231012040250. [62] Kim D-S, Lim S-B. Subcritical water extraction of rutin from the aerial parts of common buckwheat. J Supercrit Fluids. 2019;152: 104561. https://doi.org/10.1016/j.supflu.2019.104561. [63] Bangar SP, Sharma N, Sanwal N, et al. Bioactive potential of beetroot (beta vulgaris). Food Res Int. 2022;158: 111556. https://doi.org/10.1016/j.foodres.2022.111556. [64] Elangovan B. A review on pharmacological studies of natural flavanone: pinobanksin. 3 Biotech. 2024;14(4): 111. https://doi.org/10.1007/s13205-023-03904-5. [65] Song Y, Wu W, Sheng L, et al. Chrysin ameliorates hepatic steatosis induced by a diet deficient in methionine and choline by inducing the secretion of hepatocyte nuclear factor 4α-dependent very low-density lipoprotein. J Biochem Mol Toxicol. 2020. https://doi.org/10.1002/jbt.22497. [66] Xie Y, Peng X. Effects of chrysin on the apoptosis in oral squamous carcinoma kb cell line and the underlying mechanisms. Zhong nan da xue xue bao Yi xue ban J Central South Univ Med Sci. 2019. https://doi.org/10.11817/j.issn.1672-7347.2019.05.008. [67] Li H-J, Wu N-L, Pu C-M, et al. Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of ccl20 and antimicrobial peptides. Sci Rep. 2020;10(1): 2932. https://doi.org/10.1038/s41598-020-60050-1. [68] Zhang S, Mao B, Cui S, et al. Absorption, metabolism, bioactivity, and biotransformation of epigallocatechin gallate. Crit Rev Food Sci Nutr. 2024;64(19):6546-66. https://doi.org/10.1080/10408398.2023.2170972. [69] Taheri Y, Suleria HAR, Martins N, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. Bmc Complement Med Ther. 2020. https://doi.org/10.1186/s12906-020-03033-z. [70] Okińczyc P, Widelski J, Ciochoń M, et al. Phytochemical profile, plant precursors and some properties of georgian propolis. Molecules. 2022;27(22):7714. https://doi.org/10.3390/molecules27227714. [71] Puertas-Bartolomé M, W?odarczyk-Biegun MK, del Campo A, et al. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. Mater Sci Eng. 2021. https://doi.org/10.1016/j.msec.2021.112515. [72] Puertas-Bartolomé M, Vázquez-Lasa B, San Román J. Bioactive and bioadhesive catechol conjugated polymers for tissue regeneration. Polymers. 2018;10(7): 768. https://doi.org/10.3390/polym10070768. [73] dos Santos AN, de L Nascimento TR, Gondim BL, et al. Catechins as model bioactive compounds for biomedical applications. Curr Pharm Des. 2020. https://doi.org/10.2174/1381612826666200603124418. [74] Kimura Y, Sumiyoshi M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of m2 macrophage differentiation in tumor-associated macrophages and/or g1 arrest in tumor cells. Eur J Pharmacol. 2015;746:115-25. https://doi.org/10.1016/j.ejphar.2014.10.048. [75] Yang L, Ding W, Xu Y, et al. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016;21(4):468. https://doi.org/10.3390/molecules21040468. [76] Paraschiv C, Gosav S, Burlacu CM, et al. Exploring the inhibitory efficacy of resokaempferol and tectochrysin on pi3kα protein by combining dft and molecular docking against wild-type and h1047r mutant forms. Inventions. 2024;9(5): 96. https://doi.org/10.3390/inventions9050096. [77] Ijaz MU, Alvi K, Hamza A, et al. Curative effects of tectochrysin on paraquat-instigated testicular toxicity in rats: a biochemical and histopathological based study. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e25337. [78] Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):403-25. https://doi.org/10.1080/14756366.2016.1256882. [79] Ogunleye FA, Fapohunda O, Nwangwu S. A review on medicinal uses and pharmacological activities of african star apple (chrysophyllum albidum). Acta Scientific Cancer Biology, 2020. 1(4). https://actascientific.com/ASPC/pdf/ASPC-01-0023.pdf. [80] Jia A, Liu F, Fan S-Y. In vivo antihyperuricemic activities of 3, 4, 5-tri-o-caffeoylquinic acid, 4, 4’, 6’-trihydroxy-2’-methoxychalcone, and caffeic acid from the aerial parts of Gnaphalium affine. Pharm Front. 2023;5(02):e77-83. https://doi.org/10.1055/s-0043-1768691. [81] Fu Y, Chen J, Li Y-J, et al. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013;141(2):1063-71. https://doi.org/10.1016/j.foodchem.2013.03.089. [82] Sinyeue C, Matsui M, Oelgem?ller M, et al. Synthesis and investigation of flavanone derivatives as potential new anti-inflammatory agents. Molecules. 2022;27(6): 1781. https://doi.org/10.3390/molecules27061781. [83] Nina N, Quispe C, Jiménez-Aspee F, et al. Antibacterial activity, antioxidant effect and chemical composition of propolis from the región del Maule, central Chile. Molecules. 2015;20(10):18144-67. https://doi.org/10.3390/molecules201018144. [84] Bai M, Zheng C-J, Wu L-J, et al. Bioactive flavonoid derivatives from scutellaria luzonica. Chem Nat Compd. 2018;54:350-3. https://doi.org/10.1007/s10600-018-2342-y. [85] Chang LS, Li CB, Qin N, et al. Synthesis and antidiabetic activity of 5, 7-dihydroxyflavonoids and analogs. Chem Biodivers. 2012;9(1):162-9. https://doi.org/10.1002/cbdv.201100049. [86] Afolayan A, Meyer J. The antimicrobial activity of 3, 5, 7-trihydroxyflavone isolated from the shoots of helichrysum aureonitens. J Ethnopharmacol. 1997;57(3):177-81. https://doi.org/10.1016/s0378-8741(97)00065-2. [87] Schultz DJ, Wickramasinghe NS, Klinge CM. Anacardic acid biosynthesis and bioactivity. Amsterdam: Elsevier; 2006. [88] Nguyen HX, VAN Do TN, Nguyen MTT, et al. A new alkenylphenol from the propolis of stingless bee trigona minor. Nat Prod Commun. 2018. https://doi.org/10.1177/1934578X1801300121. [89] Alen Y, Nakajima S, Nitoda T, et al. Two antinematodal phenolics from knema hookeriana, a Sumatran rainforest plant. Z Naturforsch C. 2000;55(3-4):300-4. https://doi.org/10.1515/znc-2000-3-426. [90] Kardar M, Zhang T, Coxon G, et al. Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry. 2014;106:156-63. https://doi.org/10.1016/j.phytochem.2014.07.016. [91] Ts S, Senthilraja P, Manivel G. Molecular docking, admet property analysis and antibacterial potency of bioactive compounds from marine bacillus cereus against espf (e. Coli). World J Pharm Res. 2024. https://doi.org/10.20959/wjpr20247-31775. [92] Negri G, Silva CCF, Coelho GR, et al. Cardanols detected in non-polar propolis extracts from scaptotrigona aff. postica (hymenoptera, apidae, meliponini). Braz J Food Technol. 2019;22: e2018265. https://doi.org/10.1590/1981-6723.26518. [93] Kn?dler M, Conrad J, Wenzig EM, et al. Anti-inflammatory 5-(11′ z-heptadecenyl)-and 5-(8′ z, 11′ z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochemistry. 2008;69(4):988-93. https://doi.org/10.1016/j.phytochem.2007.10.013. [94] Montanari RM, Barbosa LC, Demuner AJ, et al. Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Quim Nova. 2011;34:1550-5. https://doi.org/10.1590/S0100-40422011000900013. [95] Kim TD, Lee JY, Cho BJ, et al. The analgesic and anti-inflammatory effects of 7-oxosandaracopimaric acid isolated from the roots of aralia cordata. Arch Pharm Res. 2010;33:509-14. https://doi.org/10.1007/s12272-010-0403-2. [96] Jerz G, Elnakady YA, Braun A, et al. Preparative mass-spectrometry profiling of bioactive metabolites in saudi-arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection. J Chromatogr A. 2014;1347:17-29. https://doi.org/10.1016/j.chroma.2014.04.068. [97] Proteggente AR, Pannala AS, Paganga G, et al. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res. 2002;36(2):217-33. https://doi.org/10.1080/10715760290006484. [98] Salleh SNAS, Hanapiah NAM, Johari WLW, et al. Analysis of bioactive compounds and chemical composition of Malaysian stingless bee propolis water extracts. Saudi J Biol Sci. 2021;28(12):6705-10. https://doi.org/10.1016/j.sjbs.2021.07.049. [99] Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024. [100] Guerrini A, Bruni R, Maietti S, et al. Ecuadorian stingless bee (meliponinae) honey: a chemical and functional profile of an ancient health product. Food Chem. 2009;114(4):1413-20. https://doi.org/10.1016/j.foodchem.2008.11.023. [101] Gang F-L, Zhu F, Li X-T, et al. Synthesis and bioactivities evaluation of l-pyroglutamic acid analogues from natural product lead. Bioorg Med Chem. 2018;26(16):4644-9. https://doi.org/10.1016/j.bmc.2018.07.041. [102] Tania Ad, Suoth E, Fatimawali F, et al. Molecular docking of bioactive compounds of nut grass (cyperus rotundus l.) tuber against sars-cov-2. New York: AIP Publishing; 2023. https://doi.org/10.1063/5.0103882. [103] ?ZER. Propolis and potential use in food products. Turkish J Agriculture-Food Sci Technol. 2020;8(5):1139-44. https://doi.org/10.24925/turjaf.v8i5.1139-1144.3324. [104] Gavanji S, Larki B. Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chin J Integr Med. 2017;23:201-7. https://doi.org/10.1007/s11655-015-2074-9. [105] Mulyati AH, Sulaeman A, Marliyati SA, et al. Macro and micronutrient content of raw propolis collected from different regions in Indonesia. J Gizi Pangan. 2021;16(1):109-14. [106] Ristivojevi? P, Ne?i? J, Andri? F, et al. Elemental profile of propolis from different areas of Serbia. Chem Biodivers. 2023. https://doi.org/10.1002/cbdv.202201140. [107] Dias LG, Pereira AP, Estevinho LM. Comparative study of different portuguese samples of propolis: pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food Chem Toxicol. 2012;50(12):4246-53. https://doi.org/10.1016/j.fct.2012.08.056. [108] Afata TN, Nemo R, Ishete N, et al. Phytochemical investigation, physicochemical characterization, and antimicrobial activities of Ethiopian propolis. Arab J Chem. 2022;15(7): 103931. https://doi.org/10.1016/j.arabjc.2022.103931. [109] Kunrath CA, Savoldi DC, Mileski JPF, et al. Application and evaluation of propolis, the natural antioxidant in italian-type salami. Brazilian J Food Technol. 2017. https://doi.org/10.1590/1981-6723.3516. [110] Pant K, Thakur M, Chopra H, et al. Characterization and discrimination of Indian propolis based on physico-chemical, techno-functional, thermal and textural properties: a multivariate approach. J King Saud Univ-Sci. 2021;33(4): 101405. https://doi.org/10.1016/j.jksus.2021.101405. [111] Godhi BS, Beeraka NM, Buddi JSHP, et al. Updates in the analytical isolation of Indian propolis chemical constituents and their role in dental pharmacology - a review. Nat Prod J. 2022;12(7):77-88. https://doi.org/10.2174/2210315512666220509111439. [112] Cui-Ping Z, Shuai H, Wen-Ting W, et al. Development of high-performance liquid chromatographic for quality and authenticity control of chinese propolis. J Food Sci. 2014;79(7):C1315-22. https://doi.org/10.1111/1750-3841.12510. [113] Singh P, Mishra SK, Noel S, et al. Acute exposure of apigenin induces hepatotoxicity in swiss mice. PLoS ONE. 2012;7(2): e31964. https://doi.org/10.1371/journal.pone.0031964. [114] Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673-751. https://doi.org/10.1016/S0031-6997(24)01472-8. [115] Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis. 2008;29(11):2210-7. https://doi.org/10.1093/carcin/bgn201. [116] Liu G, Bao X, Jiang Y, et al. Identifying the association between Alzheimer’s disease and Parkinson’s disease using genome-wide association studies and protein-protein interaction network. Mol Neurobiol. 2015;52:1629-36. https://doi.org/10.1007/s12035-014-8946-8. [117] Choi M-J, Lee E-J, Park J-S, et al. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: critical role of ppar-γ signaling pathway. Biochem Pharmacol. 2017;144:120-31. https://doi.org/10.1016/j.bcp.2017.07.021. [118] Sivakumar AS, Viswanathan P, Anuradha CV. Dose-dependent effect of galangin on fructose-mediated insulin resistance and oxidative events in rat kidney. Redox Rep. 2010;15(5):224-32. https://doi.org/10.1179/135100010x12826446921545. [119] Liu Y, Liang X, Zhang G, et al. Galangin and pinocembrin from propolis ameliorate insulin resistance in hepg2 cells via regulating akt/mtor signaling. Evid Complement Altern Med. 2018;2018(1):7971842. https://doi.org/10.1155/2018/7971842. [120] Melliou E, Stratis E, Chinou I. Volatile constituents of propolis from various regions of Greece-antimicrobial activity. Food Chem. 2007;103(2):375-80. https://doi.org/10.1016/j.foodchem.2006.07.033. [121] Popova M, Trusheva B, Antonova D, et al. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011;126(3):1431-5. https://doi.org/10.1016/j.foodchem.2010.11.130. [122] Zhao L, Yu M, Sun M, et al. Rapid determination of major compounds in the ethanol extract of geopropolis from Malaysian stingless bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR. Molecules. 2017;22(11):1935. https://doi.org/10.3390/molecules22111935. [123] Nazir H, Shahidan WNS, Ibrahim HA, et al. Chemical constituents of malaysian geniotrigona thoracica propolis. Pertanika J Trop Agri Sci. 2018;41(3):955. [124] Pujirahayu N, Suzuki T, Katayama T. Cycloartane-type triterpenes and botanical origin of propolis of stingless Indonesian bee tetragonula sapiens. Plants. 2019;8(3):57. https://doi.org/10.3390/plants8030057. [125] Du W-Y, Xiao Y, Yao J-J, et al. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules. Exp Ther Med. 2017;13(1):17-22. https://doi.org/10.3892/etm.2016.3923. [126] Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol j environ stud. 2006;15(4):523-30. [127] Kurek-Górecka A, Rzepecka-Stojko A, Górecki M, et al. Structure and antioxidant activity of polyphenols derived from propolis. Molecules. 2013;19(1):78-101. https://doi.org/10.3390/molecules19010078. [128] Jordan LG, Booth BW. Her2+ breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I. J Biomed Mater Res A. 2018;106(1):26-32. https://doi.org/10.1002/jbm.a.36205. [129] Chung K-T, Wong TY, Wei C-I, et al. Tannins and human health: a review. Crit Rev Food Sci Nutr. 1998;38(6):421-64. https://doi.org/10.1080/10408699891274273. [130] Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: a review. Pharmacol Res. 2017;124:126-45. https://doi.org/10.1016/j.phrs.2017.08.002. |
| [1] | Mukul Shyam, Evan Prince Sabina. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications [J]. Natural Products and Bioprospecting, 2024, 14(6): 49-49. |
| [2] | Srijan Banerjee, Gustavo Cabrera-Barjas, Jaime Tapia, João Paulo Fabi, Cedric Delattre, Aparna Banerjee. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive [J]. Natural Products and Bioprospecting, 2024, 14(2): 3-3. |
| [3] | Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites [J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40. |
| [4] | Teresa S. Catalá, Linn G. Speidel, Arlette Wenzel-Storjohann, Thorsten Dittmar, Deniz Tasdemir. Bioactivity profile of dissolved organic matter and its relation to molecular composition [J]. Natural Products and Bioprospecting, 2023, 13(5): 32-32. |
| [5] | Cintia Cristina Santi Martignago, Beatriz Soares-Silva, Julia Risso Parisi, Lais Caroline Souza e Silva, Renata Neves Granito, Alessandra Mussi Ribeiro, Ana Cláudia Muniz Renno, Lorena Ramos Freitas de Sousa, Anna Caroline Campos Aguiar. Terpenes extracted from marine sponges with antioxidant activity: a systematic review [J]. Natural Products and Bioprospecting, 2023, 13(4): 23-23. |
| [6] | Xiao-Li Cheng, Han-Xiang Li, Juan Chen, Ping Wu, Jing-Hua Xue, Zhong-Yu Zhou, Nia-He Xia, Xiao-Yi Wei. Bioactive Diarylheptanoids from Alpinia coriandriodora [J]. Natural Products and Bioprospecting, 2021, 11(1): 63-72. |
| [7] | Marines Marli Gniech Karasawa, Chakravarthi Mohan. Fruits as Prospective Reserves of bioactive Compounds: A Review [J]. Natural Products and Bioprospecting, 2018, 8(5): 335-346. |
| [8] | Manar Adam, Gihan O. M. Elhassan, Sakina Yagi, Fatma Sezer Senol, Ilkay Erdogan Orhan, Abdel Azim Ahmed, Thomas Efferth. In Vitro Antioxidant and Cytotoxic Activities of 18 Plants from the Erkowit Region, Eastern Sudan [J]. Natural Products and Bioprospecting, 2018, 8(2): 97-105. |
| [9] | Shan Zhang, Lu Xu, Yang-Xi Liu, Hai-Yan Fu, Zuo-Bing Xiao, Yuan-Bin She. Characterization of Aroma-Active Components and Antioxidant Activity Analysis of E-jiao (Colla Corii Asini) from Different Geographical Origins [J]. Natural Products and Bioprospecting, 2018, 8(2): 71-82. |
| [10] | Daniela Batista,Pedro L.Falé,Maria L.Serralheiro,Maria E.Araújo,Paulo J.A.Madeira,Carlos Borges,Isabel Torgal,Margarida Goulart,Jorge Justino,Alice Martins,Amélia P.Rauter. New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract [J]. Natural Products and Bioprospecting, 2015, 5(6): 277-285. |
| [11] | Seema PATEL. Yucca: A medicinally significant genus with manifold therapeutic attributes [J]. Natural Products and Bioprospecting, 2012, 2(6): 231-234. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
