Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (6): 60-60.DOI: 10.1007/s13659-025-00542-7
• Original Article • Previous Articles Next Articles
Xiao Han1, Xin-Xiu Ren1,2, Dan-Yang Zhang1, Qin-Feng Guo1, Shi-Meng Li1, Zhi-Long Xiu1, Yue-Sheng Dong1
Received:2025-04-02
Online:2026-01-12
Contact:
Yue-Sheng Dong Email:E-mail:yshdong@dlut.edu.cn
Supported by:Xiao Han1, Xin-Xiu Ren1,2, Dan-Yang Zhang1, Qin-Feng Guo1, Shi-Meng Li1, Zhi-Long Xiu1, Yue-Sheng Dong1
通讯作者:
Yue-Sheng Dong Email:E-mail:yshdong@dlut.edu.cn
基金资助:Xiao Han, Xin-Xiu Ren, Dan-Yang Zhang, Qin-Feng Guo, Shi-Meng Li, Zhi-Long Xiu, Yue-Sheng Dong. A novel polysaccharide in Polygonatum kingianum: structure elucidation, the activities of anti-inflammatory and the regulation of gut microbiota in vitro[J]. Natural Products and Bioprospecting, 2025, 15(6): 60-60.
Xiao Han, Xin-Xiu Ren, Dan-Yang Zhang, Qin-Feng Guo, Shi-Meng Li, Zhi-Long Xiu, Yue-Sheng Dong. A novel polysaccharide in Polygonatum kingianum: structure elucidation, the activities of anti-inflammatory and the regulation of gut microbiota in vitro[J]. 应用天然产物, 2025, 15(6): 60-60.
| [1] Yu Y, Shen MY, Song QQ, Xie JH. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018;183:91-101. https://doi.org/10.1016/j.carbpol.2017.12.009. [2] Mohammed A, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J Polym Environ. 2021;29:2359-71. https://doi.org/10.1007/s10924-021-02052-2. [3] Ji XL, Guo JH, Cao TZ, Zhang TT, Liu YQ, Yan YZ. Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources. Food Sci Hum Well. 2023;12:1969-80. https://doi.org/10.1016/j.fshw.2023.03.017. [4] Chen RX, Xu JX, Wu WH, Wen YX, Lu SY, El-Seedi HR, Zhao C. Structure-immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci. 2022;5:1330-41. https://doi.org/10.1016/j.crfs.2022.08.016. [5] Song YJ, Guo T, Liu SJ, Gao YL, Wang Y. Identification of Polygonati Rhizoma in three species and from different producing areas of each species using HS-GC-IMS. Lwt-Food Sci Technol. 2022;172: 114142. https://doi.org/10.1016/j.lwt.2022.114142. [6] He YA, Chen ZJ, Nie X, Wang D, Zhang Q, Peng T, Zhang C, Wu DT, Zhang JM. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: from bench to market. Int J Biol Macromol. 2022;195:102-16. https://doi.org/10.1016/j.ijbiomac.2021.12.010. [7] Gong H, Gan XA, Li YZ, Chen J, Xu YB, Shi SS, Li TZ, Li B, Wang HJ, Wang SC. Review on the genus Polygonatum polysaccharides: extraction, purification, structural characteristics and bioactivities. Int J Biol Macromol. 2023;229:909-30. https://doi.org/10.1016/j.ijbiomac.2022.12.320. [8] Teng H, Zhang Y, Jin C, Wang T, Huang S, Li L, Xie S, Wu D, Xu F. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against d-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling. J Sci Food Agric. 2023;103:779-91. https://doi.org/10.1002/jsfa.12189. [9] Liu B, Tang Y, Song Z, Ge J. Polygonatum sibiricum F. delaroche polysaccharide ameliorates HFD-induced mouse obesity via regulation of lipid metabolism and inflammatory response. Mol Med Rep. 2021;24: 501. https://doi.org/10.3892/mmr.2021.12140. [10] Shi Y, Si D, Chen D, Han Z, Yu Q, Zhang X, Liu J, Si J. Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem. 2023. https://doi.org/10.1016/j.foodchem.2022.135183. [11] Wang SQ, Li G, Zhang XF, Wang YQ, Qiang Y, Wang BL, Zou JB, Niu JF, Wang ZZ. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr Polym. 2022;291: 119524. https://doi.org/10.1016/j.carbpol.2022.119524. [12] Li XJ, Chen Q, Liu GK, Xu HR, Zhang X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int J Biol Macromol. 2021;190:730-8. https://doi.org/10.1016/j.ijbiomac.2021.09.038. [13] Huang J, Chen Y, Su Y, Yuan W, Peng D, Guan Z, Chen J, Li P, Du B. Identification of carbohydrate in Polygonatum kingianum Coll. et Hemsl and inhibiting oxidative stress. Int J Biol Macromol. 2024;261: 129760. https://doi.org/10.1016/j.ijbiomac.2024.129760. [14] Sims IM, Carnachan SM, Bell TJ, Hinkley S. Methylation analysis of polysaccharides: technical advice. Carbohydr Polym. 2018;188:1-7. https://doi.org/10.1016/j.carbpol.2017.12.075. [15] Sun W, Sun J, Zhang B, Xing Y, Yu X, Li X, Xiu Z, Dong Y. Baicalein improves insulin resistance via regulating SOCS3 and enhances the effect of acarbose on diabetes prevention. J Funct Foods. 2017;37:339-53. https://doi.org/10.1016/j.jff.2017.08.005. [16] Liu H, Xing Y, Wang Y, Ren X, Zhang D, Dai J, Xiu Z, Yu S, Dong Y. Dendrobium officinale polysaccharide prevents diabetes via the regulation of gut microbiota in prediabetic mice. 2023. Foods. https://doi.org/10.3390/foods12122310. [17] Dong YS, Sui LP, Yang F, Ren XX, Xing Y, Xiu ZL. Reducing the intestinal side effects of acarbose by baicalein through the regulation of gut microbiota: an in vitro study. Food Chem. 2022;394: 133561. https://doi.org/10.1016/j.foodchem.2022.133561. [18] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6. https://doi.org/10.1021/ac60111a017. [19] Dou Z, Chen C, Fu X. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocoll. 2019;96:568-76. https://doi.org/10.1016/j.foodhyd.2019.06.002. [20] Bai JB, Ge JC, Zhang WJ, Liu W, Luo JP, Xu FQ, Wu DL, Xie SZ. Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp. RSC Adv. 2021;11:37952-65. https://doi.org/10.1039/d1ra07214e. [21] Li R, Tao A, Yang R, Fan M, Zhang X, Du Z, Shang F, Xia C, Duan B. Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll. et Hemsl. Biomed Pharmacother. 2020;131: 110687. https://doi.org/10.1016/j.biopha.2020.110687. [22] Huang Y, Ye Y, Xu D, Ji J, Sun J, Xu M, Xia B, Shen H, Xia R, Shi W, Sun X. Structural characterization and anti-inflammatory activity of a novel neutral polysaccharide isolated from Smilax glabra Roxb. Int J Biol Macromol. 2023;234: 123559. https://doi.org/10.1016/j.ijbiomac.2023.123559. [23] Zhao P, Li X, Wang Y, Yan LY, Guo LP, Huang LQ, Gao WY. Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp. Carbohydr Polym. 2020;233: 115836. https://doi.org/10.1016/j.carbpol.2020.115836. [24] Chen G, Jiang N, Zheng J, Hu H, Yang H, Lin A, Hu B, Liu H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int J Biol Macromol. 2023;241: 124386. https://doi.org/10.1016/j.ijbiomac.2023.124386. [25] Rozi P, Abuduwaili A, Ma S, Bao X, Xu H, Zhu J, Yadikar N, Wang J, Yang X, Yili A. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza. Int J Biol Macromol. 2020;145:364-71. https://doi.org/10.1016/j.ijbiomac.2019.12.107. [26] Chen KW, Zhang QQ, Yang SZ, Zhang SY, Chen GJ. Comparative study on the impact of different extraction technologies on structural characteristics, physicochemical properties, and biological activities of polysaccharides from seedless chestnut rose (Rosa sterilis) fruit. Foods. 2024;13:772. https://doi.org/10.3390/foods13050772. [27] Li N, Shi C, Shi S, Wang H, Yan J, Wang S. An inulin-type fructan isolated from Artemisia japonica and its anti-arthritic effects. J Funct Foods. 2017;29:29-36. https://doi.org/10.1016/j.jff.2016.11.033. [28] Wang C, Hua D, Yan C. Structural characterization and antioxidant activities of a novel fructan from Achyranthes bidentata Blume, a famous medicinal plant in China. Ind Crop Prod. 2015;70:427-34. https://doi.org/10.1016/j.indcrop.2015.03.051. [29] Zhang JY, Chen HL, Luo L, Zhou ZP, Wang YX, Gao TY, Yang L, Peng T, Wu MY. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohydr Polym. 2021;267: 118219. https://doi.org/10.1016/j.carbpol.2021.118219. [30] Yu BA, Tian GY, Hui YZ. Structural study on a bioactive fructan from the root of Achyranthes bidentata Blume. Chin J Chem. 1995;13:539-44. https://doi.org/10.1002/cjoc.19950130612. [31] Chandrashekar PM, Prashanth KVH, Venkatesh YP. Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry. 2011;72:255-64. https://doi.org/10.1016/j.phytochem.2010.11.015. [32] Zhao P, Zhou H, Zhao C, Li X, Wang Y, WangA Y, Huan L, Gao W. Purification, characterization and immunomodulatory activity of fructans from Polygonatum odoratum and P. cyrtonema. Carbohydr Polym. 2019;214:44-52. https://doi.org/10.1016/j.carbpol.2019.03.014. [33] Ravenscroft N, Cescutti P, Hearshaw MA, Ramsout R, Rizzo R, Timme EM. Structural analysis of fructans from Agave americana grown in South Africa for spirit production. J Agric Food Chem. 2009;57:3995-4003. https://doi.org/10.1021/jf8039389. [34] Shi X, Yin J, Huang X, Que Z, Nie S. Structural and conformational characterization of linear O-acetyl-glucomannan purified from gel of Aloe barbadensis Miller. Int J Biol Macromol. 2018;120:2373-80. https://doi.org/10.1016/j.ijbiomac.2018.09.005. [35] Rehman K, Akash M. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23: 87. https://doi.org/10.1186/s12929-016-0303-y. [36] Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis. 2018;50:421-8. https://doi.org/10.1016/j.dld.2018.02.012. [37] Yu J, Zhao J, Xie H, Cai M, Yao L, Li J, Han L, Chen W, Yu N, Peng D. Dendrobium huoshanense polysaccharides ameliorate ulcerative colitis by improving intestinal mucosal barrier and regulating gut microbiota. J Funct Foods. 2022;96: 105231. https://doi.org/10.1016/j.jff.2022.105231. [38] Wei J, Zhao Y, Zhou C, Zhao Q, Zhong H, Zhu X, Fu T, Pan L, Shang Q, Yu G. Dietary polysaccharide from Enteromorpha clathrata attenuates obesity and increases the intestinal abundance of butyrate-producing bacterium, Eubacterium xylanophilum, in mice fed a high-fat diet. Polymers. 2021;13:3286. https://doi.org/10.3390/polym13193286. [39] Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L, Zhang M, Zhao X, Shen J, Wu S, Pang X, Tian J, Zhang C, Zhou Q, Wang L, Pang B, Chen F, Peng Z, Wang J, Zhen Z, Fang C, Li M, Chen L, Zhao L. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: a multicenter, randomized, open label clinical trial. mBio. 2018. https://doi.org/10.1128/mBio.02392-17. [40] Chang C, Lin T, Tsai Y, Wu T, Lai W, Lu C, Lai H. Next generation probiotics in disease amelioration. J Food Drug Anal. 2019;27:615-22. https://doi.org/10.1016/j.jfda.2018.12.011. [41] Ge X, Liu T, Chen Z, Zhang J, Yin X, Huang Z, Chen L, Zhao C, Shao R, Xu W. Fagopyrum tataricum ethanol extract ameliorates symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Food Funct. 2023;14:8487-503. https://doi.org/10.1039/d3fo02385k. [42] Ye X, Wu K, Xu L, Cen Y, Ni J, Chen J, Zheng W, Liu W. Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora. Front Endocrinol. 2023. https://doi.org/10.3389/fendo.2022.1103972. [43] Tian P, Wu L, Kudo M, Hayashi M, Qin L, Gao M, Xu A, Liu T. Tangnaikang, herbal formulation, alleviates obesity in diabetic SHR/cp rats through modulation of gut microbiota and related metabolic functions. Pharm Biol. 2022;60:2002-10. https://doi.org/10.1080/13880209.2022.2096075. [44] Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Zhao B. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019;117: 109138. https://doi.org/10.1016/j.biopha.2019.109138. |
| [1] | Zhou-Wei Wu, Xue-Fang Zhao, Chen-Xi Quan, Xiao-Cui Liu, Xin-Yu Tao, Yu-jie Li, Xing-Rong Peng, Ming-Hua Qiu. Structure-function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications [J]. Natural Products and Bioprospecting, 2025, 15(2): 15-15. |
| [2] | Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds. Diterpene chemical space of Aeollanthus buchnerianus Briq. aerial part [J]. Natural Products and Bioprospecting, 2025, 15(1): 6-6. |
| [3] | Ni Huang, Yi-Na Yang, Jia Huang, Hui-Yan Shao, Yan-Lang Li, Shi-Hui Qin, Han-Fen Li, Xiao-Jiang Shen, Liu Yang, Jiang-Miao Hu. Structure characterization and immunoactivity on dendritic cells of two neutral polysaccharides from Dictyophora rubrovalvata [J]. Natural Products and Bioprospecting, 2024, 14(6): 52-52. |
| [4] | Hamid Ahmadpourmir, Homayoun Attar, Javad Asili, Vahid Soheili, Seyedeh Faezeh Taghizadeh, Abolfazl Shakeri. Natural-derived acetophenones: chemistry and pharmacological activities [J]. Natural Products and Bioprospecting, 2024, 14(4): 28-28. |
| [5] | Yin-Ping Song, Nai-Yun Ji. Chemistry and biology of marine-derived Trichoderma metabolites [J]. Natural Products and Bioprospecting, 2024, 14(3): 14-14. |
| [6] | Srijan Banerjee, Gustavo Cabrera-Barjas, Jaime Tapia, João Paulo Fabi, Cedric Delattre, Aparna Banerjee. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive [J]. Natural Products and Bioprospecting, 2024, 14(2): 3-3. |
| [7] | Orawan Jongsomjainuk, Jutatip Boonsombat, Sanit Thongnest, Hunsa Prawat, Paratchata Batsomboon, Sitthivut Charoensutthivarakul, Saroj Ruchisansakun, Kittipong Chainok, Jitnapa Sirirak, Chulabhorn Mahidol, Somsak Ruchirawat. Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis [J]. Natural Products and Bioprospecting, 2023, 13(6): 55-55. |
| [8] | Ji-shuang Qi, Yingce Duan, Zhao-chen Li, Jin-ming Gao, Jianzhao Qi, Chengwei Liu. The alkynyl-containing compounds from mushrooms and their biological activities [J]. Natural Products and Bioprospecting, 2023, 13(6): 50-50. |
| [9] | Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines [J]. Natural Products and Bioprospecting, 2023, 13(6): 43-43. |
| [10] | Yang Yu, Yang Wang, Gui-Chun Wang, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity [J]. Natural Products and Bioprospecting, 2023, 13(5): 31-31. |
| [11] | Luan Wen, Zhou-Wei Wu, Li-Wu Lin, Abdulbaset Al-Romaima, Xing-Rong Peng, Ming-Hua Qiu. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights [J]. Natural Products and Bioprospecting, 2023, 13(3): 18-18. |
| [12] | Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis [J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31. |
| [13] | Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05 [J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27. |
| [14] | Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum [J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15. |
| [15] | Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz [J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
