Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (6): 56-56.DOI: 10.1007/s13659-025-00540-9
• Original Article • Previous Articles Next Articles
Songtao Wu1,2,3, Yingying Wang2, Denghui Deng2, Guohua Zheng2, Hanxiang Mei2, Cong Wang2, Xiang Zheng2, Chun Gui2, Fei Liao4, Meixian Xiang5
Received:2025-05-29
Online:2026-01-12
Contact:
Chun Gui Email:E-mail:3001@hbucm.edu.cn
Supported by:Songtao Wu1,2,3, Yingying Wang2, Denghui Deng2, Guohua Zheng2, Hanxiang Mei2, Cong Wang2, Xiang Zheng2, Chun Gui2, Fei Liao4, Meixian Xiang5
通讯作者:
Chun Gui Email:E-mail:3001@hbucm.edu.cn
作者简介:Fei Liao Email:E-mail:feiliao@whu.edu.cn;Meixian Xiang Email:E-mail:756616131@qq.com
基金资助:Songtao Wu, Yingying Wang, Denghui Deng, Guohua Zheng, Hanxiang Mei, Cong Wang, Xiang Zheng, Chun Gui, Fei Liao, Meixian Xiang. Dual inhibition of FAS and HAS2/3 by 4-MU in Realgar-Coptis chinensis unveils a metabolic checkpoint for liver cancer therapy[J]. Natural Products and Bioprospecting, 2025, 15(6): 56-56.
Songtao Wu, Yingying Wang, Denghui Deng, Guohua Zheng, Hanxiang Mei, Cong Wang, Xiang Zheng, Chun Gui, Fei Liao, Meixian Xiang. Dual inhibition of FAS and HAS2/3 by 4-MU in Realgar-Coptis chinensis unveils a metabolic checkpoint for liver cancer therapy[J]. 应用天然产物, 2025, 15(6): 56-56.
| [1] Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598-606. https://doi.org/10.1016/j.jhep.2022.08.021. [2] Draper A. A concise review of the changing landscape of hepatocellular carcinoma. Am J Manag Care. 2020;26(10 Suppl):S211-s219. https://doi.org/10.37765/ajmc.2020.88512. [3] Wu K, Lin F. Lipid metabolism as a potential target of liver cancer. J Hepatocell Carcinoma. 2024;11:327-46. https://doi.org/10.2147/jhc.S450423. [4] Corn KC, Windham MA, Rafat M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res. 2020;80: 101055. https://doi.org/10.1016/j.plipres.2020.101055. [5] Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry. 2020;59(41):3951-64. https://doi.org/10.1021/acs.biochem.0c00477. [6] Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62-76. https://doi.org/10.1016/j.cmet.2019.11.010. [7] Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4-22. https://doi.org/10.1038/s41416-019-0650-z. [8] Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res. 2023;46(11-12):855-81. https://doi.org/10.1007/s12272-023-01473-y. [9] Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16(1): 103. https://doi.org/10.1186/s13045-023-01498-2. [10] Wang T, Zhang X, Shan K, Luo Y, Yu T, Liu Z, Zhai J, Li S, Yin J, Han N. Various crystalline forms of realgar exhibit differentiated anti-abscess and anticancer effects based on a PXRD analysis and biological evaluation. J Ethnopharmacol. 2025;338(Pt3): 119122. https://doi.org/10.1016/j.jep.2024.119122. [11] Qian X, Wang Y, Liu Z, Fang F, Ma Y, Zhou L, Pan Y, Meng X, Yan B, Zhu X, Wang X, Zhao J, Liu S. Establishment of XRD fourier fingerprint identification method of realgar decoction pieces and its anti-tumor activity in tumor-in-situ transplanted mice. J Ethnopharmacol. 2024;331: 118303. https://doi.org/10.1016/j.jep.2024.118303. [12] Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong JW, Kim GY, Son CG, Cheong J, Choi YH. ROS-mediated anti-tumor effect of Coptidis Rhizoma against human hepatocellular carcinoma Hep3B cells and xenografts. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22094797. [13] Dong S, Xu P, Yang P, Jiao J, Cheng DC, Chen DL. “Huanglianjiedu Decoction” against pancreatic adenocarcinoma proliferation of by downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 signaling pathways. J Evid Based Integr Med. 2024. https://doi.org/10.1177/2515690x241291381. [14] Xiaoxia X, Jing S, Dongbin X, Yonggang T, Jingke Z, Yanying Z, Hulai W. Realgar nanoparticles inhibit migration, invasion and metastasis in a mouse model of breast cancer by suppressing matrix metalloproteinases and angiogenesis. Curr Drug Deliv. 2020;17(2):148-58. https://doi.org/10.2174/1567201817666200115105633. [15] Li M, Shang H, Wang T, Yang SQ, Li L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol. 2021;27(10):939-58. https://doi.org/10.3748/wjg.v27.i10.939. [16] Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022;41(1):17-31. https://doi.org/10.1007/s10555-021-09996-w. [17] Raskov H, Gaggar S, Tajik A, Orhan A, G?genur I. Metabolic switch in cancer - survival of the fittest. Eur J Cancer. 2023;180:30-51. https://doi.org/10.1016/j.ejca.2022.11.025. [18] Cui MY, Yi X, Zhu DX, Wu J. The role of lipid metabolism in gastric cancer. Front Oncol. 2022;12: 916661. https://doi.org/10.3389/fonc.2022.916661. [19] Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid metabolism and cancer. Life (Basel). 2022. https://doi.org/10.3390/life12060784. [20] Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov. 2024;10(1): 350. https://doi.org/10.1038/s41420-024-02126-9. [21] Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558-80. https://doi.org/10.1016/j.apsb.2021.09.019. [22] Zuo Q, Wu Y, Hu Y, Shao C, Liang Y, Chen L, Guo Q, Huang P, Chen Q. Targeting lipid reprogramming in the tumor microenvironment by traditional Chinese medicines as a potential cancer treatment. Heliyon. 2024;10(9): e30807. https://doi.org/10.1016/j.heliyon.2024.e30807. [23] Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol. 2024;15(1): 206. https://doi.org/10.1007/s12672-024-01069-y. [24] Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: a review on its dual role. Int J Biol Macromol. 2024;275(Pt2): 133744. https://doi.org/10.1016/j.ijbiomac.2024.133744. [25] Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell. 2024;187(22):6182-6199.e29. https://doi.org/10.1016/j.cell.2024.08.014. [26] Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. Sci China Life Sci. 2024;67(5):940-57. https://doi.org/10.1007/s11427-023-2417-3. [27] Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol. 2022;323(1):C145-c158. https://doi.org/10.1152/ajpcell.00139.2022. [28] Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-inducible factor 1α and its role in lung injury: adaptive or maladaptive. Inflammation. 2023;46(2):491-508. https://doi.org/10.1007/s10753-022-01769-z. [29] Fu X, Li X, Wang W, Li J. DPP3 promotes breast cancer tumorigenesis by stabilizing FASN and promoting lipid synthesis. Acta Biochim Biophys Sin (Shanghai). 2024;56(5):805-18. https://doi.org/10.3724/abbs.2024054. [30] Ward AV, Riley D, Cosper KE, Finlay-Schultz J, Brechbuhl HM, Libby AE, Hill KB, Varshney RR, Kabos P, Rudolph MC, Sartorius CA. Lipid metabolic reprogramming drives triglyceride storage and variable sensitivity to FASN inhibition in endocrine-resistant breast cancer cells. Breast Cancer Res. 2025;27(1): 32. https://doi.org/10.1186/s13058-025-01991-1. [31] Huang J, Tsang WY, Fang XN, Zhang Y, Luo J, Gong LQ, Zhang BF, Wong CN, Li ZH, Liu BL, Huang JL, Yang YM, Liu S, Ban LX, Chan YH, Guan XY. FASN inhibition decreases MHC-I degradation and synergizes with PD-L1 checkpoint blockade in hepatocellular carcinoma. Cancer Res. 2024;84(6):855-71. https://doi.org/10.1158/0008-5472.Can-23-0966. [32] Kelly W, Diaz Duque AE, Michalek J, Konkel B, Caflisch L, Chen Y, Pathuri SC, Madhusudanannair-Kunnuparampil V, Floyd J, Brenner A. Phase II investigation of TVB-2640 (denifanstat) with bevacizumab in patients with first relapse high-grade astrocytoma. Clin Cancer Res. 2023;29(13):2419-25. https://doi.org/10.1158/1078-0432.Ccr-22-2807. [33] Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Brenner A, Cook N, Lopez J, Pant S, Frankel A, Schmid P, Moore K, McCulloch W, Grimmer K, O’Farrell M, Kemble G, Burris H. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine. 2021;34: 100797. https://doi.org/10.1016/j.eclinm.2021.100797. [34] Mukha D, Dessain J, O’Connor S, Pniewski K, Bertolazzi F, Patel J, Mullins M, Schug ZT. Identification of Fasnall as a therapeutically effective complex I inhibitor. bioRxiv. 2024. https://doi.org/10.1101/2024.05.03.592013. [35] Ermini L, Driguez P. The application of long-read sequencing to cancer. Cancers (Basel). 2024. https://doi.org/10.3390/cancers16071275. [36] Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and functions of the RNA polymerase II general transcription machinery during the transcription cycle. Biomolecules. 2024. https://doi.org/10.3390/biom14020176. [37] Magnez R, Bailly C, Thuru X. Microscale thermophoresis as a tool to study protein interactions and their implication in human diseases. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23147672. [38] Shao W, Sharma R, Clausen MH, Scheller HV. Microscale thermophoresis as a powerful tool for screening glycosyltransferases involved in cell wall biosynthesis. Plant Methods. 2020;16: 99. https://doi.org/10.1186/s13007-020-00641-1. [39] Zheng D, Zhou Y, Liu Y, Ma L, Meng L. Molecular mechanism investigation on monomer kaempferol of the traditional medicine dingqing tablet in promoting apoptosis of acute myeloid Leukemia HL-60 cells. Evid Based Complement Alternat Med. 2022;2022:8383315. https://doi.org/10.1155/2022/8383315. [40] Li MN, Shen BQ, Lu X, Gao W, Wen SS, Zhang X, Yang H, Li P. An integrated two-step filtering strategy of collision cross-section interval predicting and mass defect filtering for targeted identification of analogues in herbal medicines using liquid chromatography-ion mobility-mass spectrometry. J Chromatogr A. 2021;1657:462572. https://doi.org/10.1016/j.chroma.2021.462572. [41] Wang AQ, Yuan QJ, Guo N, Yang B, Sun Y. Research progress on medicinal resources of Coptis and its isoquinoline alkaloids. Zhongguo Zhong Yao Za Zhi. 2021;46(14):3504-13. https://doi.org/10.19540/j.cnki.cjcmm.20210430.103. [42] Wu S, Tong L, Liu B, Ai Z, Hong Z, You P, Wu H, Yang Y. Bioactive ingredients obtained from Cortex Fraxini impair interactions between FAS and GPI. Free Radic Biol Med. 2020;152:504-15. https://doi.org/10.1016/j.freeradbiomed.2019.11.022. [43] Povero D, Ahn JC, Arnold J, Udompap P, Ilyas SI, Arab JP. Hepatology Highlights. Hepatology. 2022;76(1):1-2. https://doi.org/10.1002/hep.32567. [44] Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: pathogenesis and treatment. Biomed Pharmacother. 2023;161: 114545. https://doi.org/10.1016/j.biopha.2023.114545. [45] Wu Y, Lin Y, Xu S, Su D, Yang H, Tang L. Mechanisms of hesperetin in treating metabolic dysfunction-associated steatosis liver disease via network pharmacology and in vitro experiments. Open Med. 2025;20(1): 20251215. https://doi.org/10.1515/med-2025-1215. [46] Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z, Chen M, Yi J, Zhu C. Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism. Acta Biochim Biophys Sin (Shanghai). 2024;56(6):844-56. https://doi.org/10.3724/abbs.2024046. [47] Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech. 2023;13(1): 29. https://doi.org/10.1007/s13205-022-03455-1. [48] Hollow SE, Johnstone TC. Realgar and arsenene nanomaterials as arsenic-based anticancer agents. Curr Opin Chem Biol. 2023;72: 102229. https://doi.org/10.1016/j.cbpa.2022.102229. [49] Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the characteristic constituent from Coptis chinensis, exhibits significant therapeutic potential in treating cancers, metabolic and inflammatory diseases. Am J Chin Med. 2023;51(8):2121-56. https://doi.org/10.1142/s0192415x2350091x. [50] Zhang L, Ling Z, Hu Z, Meng G, Zhu X, Tang H. Huanglianjiedu decoction as an effective treatment for oral squamous cell carcinoma based on network pharmacology and experimental validation. Cancer Cell Int. 2021;21(1): 553. https://doi.org/10.1186/s12935-021-02201-6. [51] Shodry S, Hasan YTN, Ahdi IR, Ulhaq ZS. Gene targets with therapeutic potential in hepatocellular carcinoma. World J Gastrointest Oncol. 2024;16(12):4543-7. https://doi.org/10.4251/wjgo.v16.i12.4543. [52] Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis. 2024;15(8): 562. https://doi.org/10.1038/s41419-024-06956-4. [53] Chen Y, Zhong Z, Ruan X, Zhan X, Ding Y, Wei F, Qin X, Yu H, Lu Y. Novel biomarker in hepatocellular carcinoma: Stearoyl-CoA desaturase 1. Dig Liver Dis. 2025;57(3):770-81. https://doi.org/10.1016/j.dld.2024.11.008. [54] Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 cascade is regulated by the EGFR pathway: therapeutic targeting of non-small cell lung cancer. Front Oncol. 2022;12: 869672. https://doi.org/10.3389/fonc.2022.869672. [55] Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif. 2020;53(3): e12772. https://doi.org/10.1111/cpr.12772. [56] Matsushita Y, Nakagawa H, Koike K. Lipid metabolism in oncology: why it matters, how to research, and how to treat. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13030474. [57] Halimani N, Nesterchuk M, Tsitrina AA, Sabirov M, Andreichenko IN, Dashenkova NO, Petrova E, Kulikov AM, Zatsepin TS, Romanov RA, Mikaelyan AS, Kotelevtsev YV. Knockdown of Hyaluronan synthase 2 suppresses liver fibrosis in mice via induction of transcriptomic changes similar to 4MU treatment. Sci Rep. 2024;14(1): 2797. https://doi.org/10.1038/s41598-024-53089-x. [58] Wang J, Jordan AR, Zhu H, Hasanali SL, Thomas E, Lokeshwar SD, Morera DS, Alexander S, McDaniels J, Sharma A, Aguilar K, Sarcan S, Zhu T, Soloway MS, Terris MK, Thangaraju M, Lopez LE, Lokeshwar VB. Targeting hyaluronic acid synthase-3 (HAS3) for the treatment of advanced renal cell carcinoma. Cancer Cell Int. 2022;22(1): 421. https://doi.org/10.1186/s12935-022-02818-1. [59] Steen EH, Short WD, Li H, Parikh UM, Blum A, Templeman N, Nagy N, Bollyky PL, Keswani SG, Balaji S. Skin-specific knockdown of hyaluronan in mice by an optimized topical 4-methylumbelliferone formulation. Drug Deliv. 2021;28(1):422-32. https://doi.org/10.1080/10717544.2021.1886376. [60] Zhang X, Zhong Y, Miao Z, Yang Q. Hyaluronic acid promotes hepatocellular carcinoma proliferation by upregulating CD44 expression and enhancing glucose metabolism flux. Int Immunopharmacol. 2025;147: 114035. https://doi.org/10.1016/j.intimp.2025.114035. [61] Weiz G, Molejon MI, Malvicini M, Sukowati CHC, Tiribelli C, Mazzolini G, Breccia JD. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. https://doi.org/10.1111/liv.15084. [62] Wang RY, Yang JL, Xu N, Xu J, Yang SH, Liang DM, Li JZ, Zhu H. Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma. World J Gastroenterol. 2024;30(8):919-42. https://doi.org/10.3748/wjg.v30.i8.919. [63] Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Jian XH, Wen J. Recent progress in understanding mitokines as diagnostic and therapeutic targets in hepatocellular carcinoma. World J Clin Cases. 2023;11(23):5416-29. https://doi.org/10.12998/wjcc.v11.i23.5416. [64] Loomba R, Mohseni R, Lucas KJ, Gutierrez JA, Perry RG, Trotter JF, Rahimi RS, Harrison SA, Ajmera V, Wayne JD, O’Farrell M, McCulloch W, Grimmer K, Rinella M, Wai-Sun Wong V, Ratziu V, Gores GJ, Neuschwander-Tetri BA, Kemble G. TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: fascinate-1, a randomized, placebo-controlled phase 2a trial. Gastroenterology. 2021;161(5):1475-86. https://doi.org/10.1053/j.gastro.2021.07.025. [65] Liu J, Lahousse L, Nivard MG, Bot M, Chen L, van Klinken JB, Thesing CS, Beekman M, van den Akker EB, Slieker RC, Waterham E, van der Kallen CJH, de Boer I, Li-Gao R, Vojinovic D, Amin N, Radjabzadeh D, Kraaij R, Alferink LJM, Murad SD, Uitterlinden AG, Willemsen G, Pool R, Milaneschi Y, van Heemst D, Suchiman HED, Rutters F, Elders PJM, Beulens JWJ, van der Heijden A, van Greevenbroek MMJ, Arts ICW, Onderwater GLJ, van den Maagdenberg A, Mook-Kanamori DO, Hankemeier T, Terwindt GM, Stehouwer CDA, Geleijnse JM, t Hart LM, Slagboom PE, van Dijk KW, Zhernakova A, Fu J, Penninx B, Boomsma DI, Demirkan A, Stricker BHC, van Duijn CM. Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug-metabolite atlas. Nat Med. 2020;26(1):110-7. https://doi.org/10.1038/s41591-019-0722-x. [66] Kakati T, Bhattacharyya DK, Kalita JK, Norden-Krichmar TM. Degnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning. BMC Bioinformatics. 2022;23(1): 17. https://doi.org/10.1186/s12859-021-04527-4. [67] Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-12. https://doi.org/10.1093/nar/gkaa1074. [68] Jiao L, Tao Y, Ding H, Wu F, Liu Y, Li C, Li F. Bioinformatics analysis of BTK expression in lung adenocarcinoma: implications for immune infiltration, prognostic biomarkers, and therapeutic targeting. 3 Biotech. 2024;14(9): 215. https://doi.org/10.1007/s13205-024-04053-z. [69] Cheng B, Tian J, Chen Y. Identification of RNA binding protein interacting with circular RNA and hub candidate network for hepatocellular carcinoma. Aging (Albany NY). 2021;13(12):16124-43. https://doi.org/10.18632/aging.203139. [70] Sarkar A, Santoro J, Di Biasi L, Marrafino F, Piotto S. YAMACS: a graphical interface for GROMACS. Bioinformatics. 2022;38(19):4645-6. https://doi.org/10.1093/bioinformatics/btac573. [71] Tso SC, Brautigam CA. Measuring the K(D) of protein-ligand interactions using microscale thermophoresis. Methods Mol Biol. 2021;2263:161-81. https://doi.org/10.1007/978-1-0716-1197-5_6. |
| [1] | Yingchao Wu, Jiaqi Cui, Liushan Chen, Jieting Chen, Junfeng Huang, Congwen Yang, Yuqi Liang, Qianjun Chen, Qian Zuo. Senkyunolide H reverses depression-induced breast cancer progression by regulating CXCR2 [J]. Natural Products and Bioprospecting, 2025, 15(6): 57-57. |
| [2] | Daniela Amador-Martínez, Mizraim Flores, Rafael Vargas-Castro, Rocío García-Becerra, Euclides Avila, Lorenza Díaz, Janice García-Quiroz. Exploring the antineoplastic potential of α-mangostin in breast cancer [J]. Natural Products and Bioprospecting, 2025, 15(5): 43-43. |
| [3] | Bei Xiong, Jin-Jian Lu, Hongwei Guo, Mingqing Huang, Ting Li. Ginkgetin from Ginkgo biloba: mechanistic insights into anticancer efficacy [J]. Natural Products and Bioprospecting, 2025, 15(5): 50-50. |
| [4] | Patricia Quintero-Rincón, Karina Caballero-Gallardo, Jesus Olivero-Verbel. Natural anticancer agents: prospection of medicinal and aromatic plants in modern chemoprevention and chemotherapy [J]. Natural Products and Bioprospecting, 2025, 15(3): 25-25. |
| [5] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023) [J]. Natural Products and Bioprospecting, 2025, 15(2): 13-13. |
| [6] | Antonio Evidente. Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012-2023) [J]. Natural Products and Bioprospecting, 2024, 14(4): 31-31. |
| [7] | Guifeng Su, Dan Wang, Qianqing Yang, Lingmei Kong, Xiaoman Ju, Qihong Yang, Yiying Zhu, Shaohua Zhang, Yan Li. Cepharanthine suppresses APC-mutant colorectal cancers by down-regulating the expression of β-catenin [J]. Natural Products and Bioprospecting, 2024, 14(2): 6-6. |
| [8] | Shiyun Nie, Lizhong Chang, Ying Huang, Heyang Zhou, Qianqing Yang, Lingmei Kong, Yan Li. β-carboline derivative Z86 attenuates colorectal cancer cell proliferation and migration by directly targeting PI3K [J]. Natural Products and Bioprospecting, 2024, 14(1): 3-3. |
| [9] | Soumitra Sahana, Anupam Gautam, Rajveer Singh, Shivani Chandel. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots [J]. Natural Products and Bioprospecting, 2023, 13(6): 51-51. |
| [10] | Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway [J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34. |
| [11] | Fahadul Islam, Nikhil Nath, Mehrukh Zehravi, Jishan Khan, Sumiya Ben-Ta Jashim, Manoj Shrawan Charde, Rita Dadarao Chakole, K. Praveen Kumar, A. Kishore Babu, Firzan Nainu, Sharuk L. Khan, Safia Obaidur Rab, Talha Bin Emran, Polrat Wilairatana. Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed? [J]. Natural Products and Bioprospecting, 2023, 13(5): 39-39. |
| [12] | Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron [J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38. |
| [13] | Yue Zhao, Wen-Ke Gao, Xiang-Dong Wang, Li-Hua Zhang, Hai-Yang Yu, Hong-Hua Wu. Phytochemical and pharmacological studies on Solanum lyratum: a review [J]. Natural Products and Bioprospecting, 2022, 12(6): 39-39. |
| [14] | Jun Yang, Dong-Bao Hu, Meng-Yuan Xia, Ji-Feng Luo, Xing-Yu Li, Yue-Hu Wang. Bioassay-guided isolation of cytotoxic constituents from the fowers of Aquilaria sinensis [J]. Natural Products and Bioprospecting, 2022, 12(2): 11-11. |
| [15] | Christian Bailly, Gérard Vergoten. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols [J]. Natural Products and Bioprospecting, 2021, 11(6): 629-641. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
