[1] Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VK, Schmol M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohi MG, editors. Biotechnology and biology of Trichoderma. Elsevier: Amsterdam; 2014. p. 3-24. [2] Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787-99. https://doi.org/10.1007/s00253-010-2632-1. [3] Ejechi BO. Biological control of wood decay in an open tropical environment with Penicillium sp. and Trichoderma viride. Int Biodeterior Biodegrad. 1997;39(4):295-9. https://doi.org/10.1016/S0964-8305(97)00023-1. [4] Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology. 2007;97(4):532-7. https://doi.org/10.1094/PHYTO-97-4-0532. [5] Kredics L, Antal Z, Dóczi I, Manczinger L, Kevei F, Nagy E. Clinical importance of the genus Trichoderma. Acta Microbiol Immunol Hung. 2003;50(2-3):105-17. https://doi.org/10.1556/AMicr.50.2003.2-3.1. [6] Komon-Zelazowska M, Neuhof T, Dieckmann R, von Döhren H, Herrera-Estrella A, Kubicek CP, Druzhinina IS. Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell. 2007;6(12):2332-42. https://doi.org/10.1128/EC.00143-07. [7] Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology. 2008;154(11):3447-59. https://doi.org/10.1099/mic.0.2008/021196-0. [8] Jaklitsch WM, Samuels GJ, Dodd SL, Lu BS, Druzhinina IS. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Myol. 2006;56(1):135-77. https://doi.org/10.3114/sim.2006.56.04. [9] Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021;107(1):1-69. https://doi.org/10.1007/s13225-020-00464-4. [10] Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM. Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem. 2011;286(6):4544-54. https://doi.org/10.1074/jbc.M110.159723. [11] Hou X, Sun R, Feng Y, Zhang R, Zhu T, Che Q, Zhang G, Li D. Peptaibols: diversity, bioactivity, and biosynthesis. Eng Microbiol. 2022;2(3): 100026. https://doi.org/10.1016/j.engmic.2022.100026. [12] Degenkolb T, Brückner H. Peptaibiomics: towards a myriad of bioactive peptides containing Cα-dialkylamino acids? Chem Biodivers. 2008;5(9):1817-43. https://doi.org/10.1002/cbdv.200890171. [13] Brückner H, Maisch J, Reinecke C, Kimonyo A. Use of α-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics. Screening of Hypocrea Amino Acids. 1991;1(2):251-7. https://doi.org/10.1007/BF00806923. [14] Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma-a genomic perspective. Microbiology. 2012;158(1):35-45. https://doi.org/10.1099/mic.0.053629-0. [15] Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinska A, Brückner H. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chem Biodivers. 2015;12(4):662-84. https://doi.org/10.1002/cbdv.201400300. [16] Neumann NK, Stoppacher N, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R. The peptaibiotics database-a comprehensive online resource. Chem Biodivers. 2015;12(5):743-51. https://doi.org/10.1002/cbdv.201400393. [17] Degenkolb T, Berg A, Gams W, Schlegel B, Gräfe U. The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci. 2003;9(11-12):666-78. https://doi.org/10.1002/psc.497. [18] Toniolo C, Crisma M, Formaggio F, Peggion C, Epand RF, Epand RM. Lipopeptaibols, a novel family of membrane active, antimicrobial peptides. Cell Mol Life Sci. 2001;2001(58):1179-88. https://doi.org/10.1007/PL00000932. [19] Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS. The Trichoderma koningii aggregate species. Stud Mycol. 2006;56(1):67-133. https://doi.org/10.3114/sim.2006.56.03. [20] Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol. 2003;38(3):310-9. https://doi.org/10.1016/s1087-1845(02)00583-2. [21] López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Müller WH, Boekhout T, Druzhinina I. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie Van Leeuwenhoek. 2013;104:657-74. https://doi.org/10.1007/s10482-013-9975-4. [22] Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics. 2013;14:1-15. https://doi.org/10.1186/1471-2164-14-121. [23] Gazis R, Chaverri P. Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol. 2015;17:18-29. https://doi.org/10.1016/j.funeco.2015.04.001. [24] Löytynoja A, Vilella AJ, Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics. 2012;28(13):1684-91. https://doi.org/10.1093/bioinformatics/bts198. [25] Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37(1):291-4. https://doi.org/10.1093/molbev/msz189. [26] Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-5. https://doi.org/10.1093/bioinformatics/btz305. [27] Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, Kredics L. Structural diversity and bioactivities of peptaibol compounds from the Longibrachiatum clade of the filamentous fungal genus Trichoderma. Front Microbiol. 2019;10:1434. https://doi.org/10.3389/fmicb.2019.01434. [28] Stoppacher N, Neumann NK, Burgstaller L, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R. The comprehensive peptaibiotics database. Chem Biodivers. 2013;10(5):734-43. https://doi.org/10.1002/cbdv.201200427. [29] Goulard C, Hlimi S, Rebuffat S, Bodo B. Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum I. Fermentation, isolation and biological properties. J Antibiot. 1995;48(11):1248-53. https://doi.org/10.7164/antibiotics.48.1248. [30] Tyagi C, Marik T, Vágvölgyi C, Kredics L, Ötvös F. Accelerated molecular dynamics applied to the peptaibol folding problem. Int J Mol Sci. 2019;20(17): 4268. https://doi.org/10.3390/ijms20174268. [31] Case DA, Aktulga HM, Belfon K, Ben-Shalom I, Brozell SR, Cerutti DS, et al. Amber 2021. University of California, San Francisco. [32] Tyagi C, Marik T, Szekeres A, Vágvölgyi C, Kredics L, Ötvös F. Tripleurin XIIc: Peptide folding dynamics in aqueous and hydrophobic environment mimic using accelerated molecular dynamics. Molecules. 2019;24(2):358. https://doi.org/10.3390/molecules24020358. [33] Park YS, Kim ES, Deyrup ST, Lee JW, Shim SH. Cytotoxic peptaibols from Trichoderma strigosum. J Nat Prod. 2024;87:2081-94. https://doi.org/10.1021/acs.jnatprod.4c00590. [34] Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ. The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Progress. 2008;7:177-219. https://doi.org/10.1007/s11557-008-0563-3. [35] Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K. Studies on metabolites of mycoparasitic fungi. V. ion-spary ionization mass spectrometric analysis of Trichokonin-II, a peptaibol mixture obtained from the culture broth of Trichoderma koningii. Chem Pharm Bull. 1996;44(3):590-3. https://doi.org/10.1248/cpb.44.590. [36] Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B. Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum: solution structure from two-dimensional NMR spectroscopy. Eur J Biochem. 1991;201(3):661-74. https://doi.org/10.1111/j.1432-1033.1991.tb16327.x. [37] Degenkolb T, Gräfenhan T, Berg A, Nirenberg HI, Gams W, Brückner H. Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers. 2006;3(6):593-610. https://doi.org/10.1002/cbdv.200690063. [38] Marik T, Tyagi C, Racić G, Rakk D, Szekeres A, Vágvölgyi C, Kredics L. New 19-residue peptaibols from Trichoderma clade Viride. Microorganisms. 2018;6(3):85. https://doi.org/10.3390/microorganisms6030085. [39] Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H. The production of multiple small peptaibol families by single 14-module peptide synthetases in Trichoderma/Hypocrea. Chem Biodivers. 2012;9:499-535. https://doi.org/10.1002/cbdv.201100212. [40] Wenzel SC, Meiser P, Binz TM, Mahmud T, Müller R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Edit. 2006;45(14):2296-301. https://doi.org/10.1002/anie.200503737. [41] El Hajji M, Rebuffat S, Lecommandeur D, Bodo B. Isolation and sequence determination of trichozianines A antifungal peptides from Trichoderma harzianum. Int J Pept Protein Res. 1987;29:207-15. https://doi.org/10.1111/j.1399-3011.1987.tb02247.x. [42] Süssmuth RD, Mainz A. Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Edit. 2017;56(14):3770-821. https://doi.org/10.1002/anie.201609079. [43] Lee SJ, Yeo WH, Yun BS, Yoo ID. Isolation and sequence analysis of new peptaibol, boletusin, from Boletus spp. J Pept Sci. 1999;5(8):374-8. https://doi.org/10.1002/(SICI)1099-1387(199908)5:8%3c374::AID-PSC211%3e3.0.CO;2-X. [44] Dornberger K, Ihn W, Ritzau M, Gräfe U, Schlegel B, Fleck WF, Metzger JW. Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma Ap101. J Antibiot. 1995;48(9):977-89. https://doi.org/10.7164/antibiotics.48.977. [45] Yun BS, Yoo ID, Kim YH, Kim YS, Lee SJ, Kim KS, Yeo WH. Peptaivirins A and B, two new antiviral peptaibols against TMV infection. Tetrahedron Lett. 2000;41(9):1429-31. https://doi.org/10.1016/S0040-4039(99)02308-4. [46] Kronen M, Kleinwaechter P, Schlegel B, Haertl A, Graefe U, Ampullosporins B. C, D, E1, E2, E3 and E4 from Sepedonium ampullosporum HKI-0053: structures and biological activities. J Antibiot. 2001;54(2):175-8. https://doi.org/10.7164/antibiotics.54.175. [47] Rinehart KL Jr., Gaudioso LA, Moore ML, Pandey RC, Cook JC Jr., Barber M, Sedgwick RD, Bordoli RS, Tyler AN, Green BN. Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry. J Am Chem Soc. 1981;103(21):6517-20. https://doi.org/10.1021/ja00411a052. [48] Brückner H, Kirschbaum J, Jaworski A. Sequences of peptaibol antibiotics trichoaureocins from Trichoderma aureoviride. Proceedings of the 27th European Peptide Symposium, Sorrento, 2002. p. 362-363. [49] Ayers S, Ehrmann BM, Adcock A, Kroll DJ, Carcache de Blanco EJ, Shen Q, Swanson SM, Falkinham JO 3rd, Wani MC, Mitchell SM, Pearce CJ, Oberlies NH. Peptaibols from two unidentified fungi of the order Hypocreales with cytotoxic, antibiotic, and anthelmintic activities. J Pept. 2012;18(8):500-10. https://doi.org/10.1002/psc.2425. [50] Kyle KE, Puckett SP, Caraballo-Rodríguez AM, Rivera-Chávez J, Samples RM, Earp CE, Raja HA, Pearce CJ, Ernst M, van der Hooft JJJ, Adams ME, Oberlies NH, Dorrestein PC, Klassen JL, Balunas MJ. Trachymyrmex septentrionalis ants promote fungus garden hygiene using Trichoderma-derived metabolite cues. Proc Natl Acad Sci U S A. 2023;120(25): e2219373120. https://doi.org/10.1073/pnas.2219373120. [51] Tsantrizos YS, Pischos S, Sauriol F, Widden P. Peptaibol metabolites of Tolypocladium geodes. Can J Chem. 1996;74(2):165-72. https://doi.org/10.1139/v96-020. [52] Stoppacher N, Zeilinger S, Omann M, Lassahn PG, Roitinger A, Krska R, Schuhmacher R. Characterisation of the peptaibiome of the biocontrol fungus Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(12):1889-98. https://doi.org/10.1002/rcm.3568. [53] Sasamura S, Muramatsu H, Takase S, Fujie A, Fujii T, Hino M, Sakamoto K, Hashimoto M. Bioconversion of AS1387392: screening and characterization of actinomycetes that convert AS1387392 to AS1429716. J Antibiot. 2010;63(11):637-42. https://doi.org/10.1038/ja.2010.89. [54] Pandey RC, Cook JC, Rinehart KL. High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. J Am Chem Soc. 1977;99:8469-83. https://doi.org/10.1021/ja00468a016. [55] Rinehart KL Jr, Cook JC Jr, Meng H, Olson KL, Pandey RC. Mass spectrometric determination of molecular formulas for membrane-modifying antibiotics. Nature. 1977;269(5631):832-3. https://doi.org/10.1038/269832a0. [56] Rebuffat S, El Hajji M, Hennig P, Davoust D, Bodo B. Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Int J Pept Prot Res. 1989;34:200-10. https://doi.org/10.1111/j.1399-3011.1989.tb00231.x. [57] Duval D, Rebuffat S, Goulard C, Prigent Y, Becchi M, Bodo B. Isolation and sequence analysis of the peptide antibiotics trichorzins PA from Trichoderma harzianum. J Chem Soc Perkin Trans. 1997;1:21. https://doi.org/10.1002/chin.199748241. [58] Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W. Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem. 2003;11:4263-74. https://doi.org/10.1016/s0968-0896(03)00395-x. [59] Christner C, Zerlin M, Gräfe U, Heinze S, Küllertz G, Fischer G. Lipohexin, a new inhibitor of prolyl endopeptidase from Moeszia lindtneri (HKI-0054) and Paedlomyces sp. (HKI-0055; HKI-0096) II. inhibitory activities and specificity. J Antibiot. 1997;50(5):384-9. https://doi.org/10.7164/antibiotics.50.384. [60] China N, Blond A, Goulard C, Bodo B, Rebuffat S. Structure and membrane properties of trichogin GB IX from Trichoderma longibrachiatum, the longest sequence among lipopeptaibols. In: Peptides 2000, 26th European Peptide Symposium, Montpellier, France, 5 pages. [61] Auvin-Guette C, Rebuffat S, Vuidepot I, Massias M, Bodo B. Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perk T. 1993;1(2):249-55. https://doi.org/10.1039/P19930000249. [62] McMullin DR, Renaud JB, Barasubiye T, Sumarah MW, Miller JD. Metabolites of Trichoderma species isolated from damp building materials. Can J Microbiol. 2017;63(7):621-32. https://doi.org/10.1139/cjm-2017-0083. [63] Lyu PC, Sherman JC, Chen A, Kallenbach NR. Alpha-helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc Natl Acad Sci U S A. 1991;88(12):5317-20. https://doi.org/10.1073/pnas.88.12.5317. [64] Li SC, Deber CM. A measure of helical propensity for amino acids in membrane environments. Nat Struct Biol. 1994;1(6):368-73. https://doi.org/10.1038/nsb0894-558. [65] Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J. 2009;96(2):552-65. https://doi.org/10.1016/j.bpj.2008.10.012. [66] Cherry MA, Higgins SK, Melroy H, Lee HS, Pokorny A. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. J Phys Chem B. 2014;118(43):12462-70. https://doi.org/10.1021/jp507289w. [67] Deber CM, Stone TA. Relative role(s) of leucine versus isoleucine in the folding of membrane proteins. Peptide Sci. 2019;111(1): e24075. https://doi.org/10.1002/pep2.24075. [68] Nakatani T, Koga A, Goto S, Inoue M, Shigedomi K, Seki K, Araki K, Taira J, Kodama H, Osada S. Importance of isoleucine residue in ion channel formation ability of 11-residue peptaibols. Bioorg Med Chem. 2024;110: 117839. https://doi.org/10.1016/j.bmc.2024.117839. [69] Ritzau M, Heinze S, Dornberger K, Berg A, Fleck W, Schlegel B, Hartl A, Grafe U. Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullospomm HKI-0053 with neuroleptic activity in mice. J Antibiot. 1997;50:722-8. https://doi.org/10.7164/antibiotics.50.722. [70] Adam C, Peters AD, Lizio MG, Whitehead GF, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ. The role of terminal functionality in the membrane and antibacterial activity of peptaibolmimetic aib foldamers. Chemistry. 2018;24:2249-56. https://doi.org/10.1002/chem.201705299. [71] Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on α-amino acids. Pept Sci. 2006;84:3-12. https://doi.org/10.1002/bip.20357. [72] Banerjee R, Basu G. A short Aib/Ala-based peptide helix is as stable as an Ala-based peptide helix double its length. Chem Bio Chem. 2002;3:1263-6. https://doi.org/10.1002/1439-7633(20021202)3:12%3c1263::AID-CBIC1263%3e3.0.CO;2-O. [73] Tsuji G, Misawa T, Doi M, Demizu Y. Extent of helical induction caused by introducing α-aminoisobutyric acid into an oligovaline sequence. ACS Omega. 2018;3:6395-9. https://doi.org/10.1021/acsomega.8b01030. [74] Cheng SF, Chang DK. Proline-induced kink in a helix arises primarily from dihedral angle energy: a molecular dynamics simulation on alamethicin. Chem Phys Lett. 1999;301:453-7. https://doi.org/10.1016/S0009-2614(99)00067-6. [75] Kaduk C, Dathe M, Bienert M. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Biochim Biophys Acta. 1998;1373:137-46. https://doi.org/10.1016/S0005-2736(98)00100-X. [76] Duclohier H. Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. Eur Biophys J. 2004;33:169-74. https://doi.org/10.1007/s00249-003-0383-y. [77] De Zotti M, Biondi B, Park Y, Hahm KS, Crisma M, Toniolo C, Formaggio F. Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity. Amino Acids. 2012;43:1761-77. https://doi.org/10.1007/s00726-012-1261-7. |