Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (5): 44-44.DOI: 10.1007/s13659-025-00529-4
• REVIEWS • Previous Articles Next Articles
Delfly Booby Abdjul1,2, Fitri Budiyanto1, Joko Tri Wibowo1, Tutik Murniasih1, Siti Irma Rahmawati1, Dwi Wahyu Indriani1, Masteria Yunovilsa Putra1, Asep Bayu1
Received:2025-03-19
Online:2025-11-06
Contact:
Delfly Booby Abdjul,E-mail:booby_abdjul@yahoo.com;Asep Bayu,E-mail:asep044@brin.go.id
Supported by:Delfly Booby Abdjul1,2, Fitri Budiyanto1, Joko Tri Wibowo1, Tutik Murniasih1, Siti Irma Rahmawati1, Dwi Wahyu Indriani1, Masteria Yunovilsa Putra1, Asep Bayu1
通讯作者:
Delfly Booby Abdjul,E-mail:booby_abdjul@yahoo.com;Asep Bayu,E-mail:asep044@brin.go.id
基金资助:Delfly Booby Abdjul, Fitri Budiyanto, Joko Tri Wibowo, Tutik Murniasih, Siti Irma Rahmawati, Dwi Wahyu Indriani, Masteria Yunovilsa Putra, Asep Bayu. Unlocking potent anti-tuberculosis natural products through structure–activity relationship analysis[J]. Natural Products and Bioprospecting, 2025, 15(5): 44-44.
Delfly Booby Abdjul, Fitri Budiyanto, Joko Tri Wibowo, Tutik Murniasih, Siti Irma Rahmawati, Dwi Wahyu Indriani, Masteria Yunovilsa Putra, Asep Bayu. Unlocking potent anti-tuberculosis natural products through structure–activity relationship analysis[J]. 应用天然产物, 2025, 15(5): 44-44.
| [1] Huszár S, Chibale K, Singh V. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discov Today. 2020;25:772-80. [2] Ejalonibu MA, Ogundare SA, Elrashedy AA, Ejalonibu MA, Lawal MM, Mhlongo NN, et al. Drug discovery for mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci. 2021;22: 13259. [3] Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol. 2022;20:685-701. [4] Bagcchi S. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023;4: e20. https://doi.org/10.1016/S2666-5247(22)00359-7. [5] Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: impact of alkaloids. Eur J Med Chem. 2017;137:504-44. [6] Huang Y, Ai L, Wang X, Sun Z, Wang F. Review and updates on the diagnosis of tuberculosis. J Clin Med. 2022;11:5286. [7] Rabaan AA, Alhumaid S, Albayat H, Alsaeed M, Alofi FS, Al-Howaidi MH, et al. Promising antimycobacterial activities of flavonoids against Mycobacterium sp. drug targets: a comprehensive review. Molecules. 2022;27:5335. [8] Tiberi S, Utjesanovic N, Galvin J, Centis R, D’Ambrosio L, van den Boom M, et al. Drug resistant TB-latest developments in epidemiology, diagnostics and management. Int J Infect Dis. 2022;124:S20-5. [9] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629-61. [10] de la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020;25: 745. [11] Mdluli K, Kaneko T, Upton A. The Tuberculosis drug discovery and development pipeline and emerging drug targets the recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs. Cold Spring Harb Perspect Med. 2015;5: a021154. [12] Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: emerging opportunities for drug discovery. Eur J Med Chem. 2021;224: 113732. [13] Agnivesh PK, Roy A, Sau S, Kumar S, Kalia NP. Advancements and challenges in tuberculosis drug discovery: a comprehensive overview. Microb Pathog. 2025;2025: 107074. [14] Getahun M, Blumberg HM, Ameni G, Beyene D, Kempker RR. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE. 2022;17: e0274426. [15] Jadaun GPS, Agarwal C, Sharma H, Ahmed Z, Upadhyay P, Faujdar J, et al. Determination of ethambutol MICs for Mycobacterium tuberculosis and Mycobacterium avium isolates by resazurin microtitre assay. J Antimicrob Chemother. 2007;60:152-5. [16] Chakraborty S, Rhee KY. Tuberculosis drug development: History and evolution of the mechanism-based paradigm. Cold Spring Harb Perspect Med. 2015;5: a021147. [17] Kumar G, Marutha C. Natural products and their analogues acting against Mycobacterium tuberculosis: a recent update. Drug Dev Res. 2023;84:779-804. [18] Maxwell A, Ghate V, Aranjani J, Lewis S. Breaking the barriers for the delivery of amikacin: challenges, strategies, and opportunities. Life Sci. 2021;284: 119883. [19] Koseki Y, Okamoto S. Studies on cross-resistance between capreomycin and certain other anti-mycobacterial agents. Jpn J Med Sci Biol. 1963;16:31-8. [20] Wu X, Shang Y, Ren W, Wang W, Wang Y, Xue Z, et al. Minimum inhibitory concentration of cycloserine against Mycobacterium tuberculosis using the MGIT 960 system and a proposed critical concentration. Int J Infect Dis. 2022;121:148-51. [21] Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS. Evidence for expanding the Role of Streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2020;64:e00860-e920. [22] Igarashi M, Ishizaki Y, Takahashi Y. New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development. J Antibiot. 2018;71:15-25. [23] Truax NJ, Romo D. Bridging the gap between natural product synthesis and drug discovery. Nat Prod Rep R Soc Chem. 2020;37:1436-53. [24] Schetz JA. Structure-activity relationships: theory, uses and limitations. Ref Modul Biomed Sci. 2015. https://doi.org/10.1016/B978-0-12-801238-3.05329-0. [25] Bandodkar B, Shandil RK, Bhat J, Balganesh TS. Two decades of tb drug discovery efforts-What have we learned? Appl Sci. 2020;10:5704. [26] Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2020;9:1651-63. [27] Li F, Marwitz F, Rudolph D, Gauda W, Cohrs M, Neumann PR, et al. A comparative pharmacokinetics study of orally and intranasally administered 8-Nitro-1,3-benzothiazin-4-one (BTZ043) amorphous drug nanoparticles. ACS Pharmacol Transl Sci. 2024;7:4123-34. [28] Zhao H, Wang B, Fu L, Li G, Lu H, Liu Y, et al. Discovery of a conformationally constrained oxazolidinone with improved safety and efficacy profiles for the treatment of multidrug-resistant tuberculosis. J Med Chem. 2020;63:9316-39. [29] Tiberi S, Vjecha MJ, Zumla A, Galvin J, Migliori GB, Zumla A. Accelerating development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic. Int J Infect Dis. 2021;113:S96-99. [30] Zhao H, Lu Y, Sheng L, Yuan Z, Wang B, Wang W, et al. Discovery of fluorine-containing benzoxazinyl-oxazolidinones for the treatment of multidrug resistant tuberculosis. ACS Med Chem Lett. 2017;8:533-7. [31] Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch Pharm Res. 2013;36:517-35. [32] Mazlun MH, Sabran SF, Mohamed M. Phenolic compounds as promising drug candidates. Molecules. 2019;24:2449. [33] Mayer AMS, Guerrero AJ, Rodr AD, Taglialatela-scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: marine compounds with affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs. 2021;19:49. [34] Chen J, Xu L, Zhou Y, Han B. Natural products from actinomycetes associated with marine organisms. Mar Drugs. 2021;19:629. [35] Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PGA. Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol. 2015;4:165-83. [36] Farah SI, Abdelrahman AA, North EJ, Chauhan H. Opportunities and challenges for natural products as novel antituberculosis agents. Assay Drug Dev Technol. 2016;14:29-38. [37] Jain H, Chella N. Methods to improve the solubility of therapeutical natural products: a review. Environ Chem Lett. 2021;19:111-21. [38] Jiménez C. Marine natural products in medicinal chemistry. ACS Med Chem Lett. 2018;9:959-61. [39] Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res. 2019;147: 104373. [40] Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res. 2017;128:58-69. [41] Casertano M, Genovese M, Piazza L, Balestri F, Del Corso A, Vito A, et al. Identifying human PTP1B enzyme inhibitors from marine natural products: perspectives for developing of novel insulin-mimetic drugs. Pharmaceuticals. 2022;15:325. [42] Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, et al. Marine natural products: a source of novel anticancer drugs. Mar Drugs. 2019;17:491. [43] Ameen F, AlNadhari S, Al-Homaidan AA. Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci. 2021;28:224-31. [44] Begum SMFM, Hemalatha S. Marine natural products—a vital source of novel biotherapeutics. Curr Pharmacol Rep. 2022;8:339-49. [45] Datta D, Nath Talapatra S, Swarnakar S. Bioactive compounds from marine invertebrates for potential medicines—an overview. Int Lett Nat Sci. 2015;34:42-61. [46] Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG. Insights about clinically approved and preclinically investigated marine natural products. Curr Res Biotechnol. 2020;2:88-102. [47] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670-95. [48] Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2018;35:8-53. [49] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2019;36:122-73. [50] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2020;37:175-223. [51] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362-413. [52] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2022;39:1122-71. [53] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2023;40:275-325. [54] Le H, Wu A, Newman D, Glaser K, Mayer A. The marine pharmacology and pharmaceuticals pipeline in 2020. FASEB J. 2021;34(S1):1-1. [55] Haque N, Parveen S, Tang T, Wei J, Huang Z. Marine natural products in clinical use. Mar Drugs. 2022;20:528. [56] Hou XM, Wang CY, Gerwick WH, Shao CL. Marine natural products as potential anti-tubercular agents. Eur J Med Chem. 2019;165:273-92. [57] Yousaf M, El Sayed KA, Rao KV, Lim CW, Hu JF, Kelly M, et al. 12,34-oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron. 2002;58:7397-402. [58] Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod. 2004;67:1314-8. [59] Rao KV, Donia MS, Peng J, Garcia-Palomero E, Alonso D, Martinez A, et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod. 2006;69:1034-40. [60] Simithy J, Fuanta NR, Alturki M, Hobrath JV, Wahba AE, Pina I, et al. Slow-binding inhibition of Mycobacterium tuberculosis shikimate kinase by manzamine alkaloids. Biochemistry. 2018;57:4923-33. [61] Kubota T, Kurimoto SI, Kobayashi J. The manzamine alkaloids. Alkaloids Chem Biol. 2020;84:1-124. [62] Hua HM, Peng J, Dunbar DC, Schinazi RF, de Castro Andrews AG, Cuevas C, et al. Batzelladine alkaloids from the Caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron. 2007;63:11179-88. [63] Abd Rani NZ, Lee YK, Ahmad S, Meesala R, Abdullah I. Fused tricyclic guanidine alkaloids: insights into their structure, synthesis and bioactivity. Mar Drugs. 2022;20:579. [64] Kumar MMK, Naik JD, Satyavathi K, Ramana H, Varma PR, Nagasree KP, et al. Denigrins A-C: new antitubercular 3,4-diarylpyrrole alkaloids from Dendrilla nigra. Nat Prod Res. 2014;28:888-94. [65] Kang U, Cartner LK, Wang D, Kim CK, Thomas CL, Woldemichael GM, et al. Denigrins and dactylpyrroles, arylpyrrole alkaloids from a Dactylia sp. marine sponge. J Nat Prod. 2020;83:3464-70. [66] Appleton DR, Pearce AN, Copp BR. Anti-tuberculosis natural products: synthesis and biological evaluation of pyridoacridine alkaloids related to ascididemin. Tetrahedron. 2010;66:4977-86. [67] Kobayash J, Cheng J, Nakamura H, Ohizumi Y, Hirata Y, Sasaki T, et al. Ascididemin, a novel pentacyclic aromatic alkaloid with potent antileukemic activity from the Okinawan tunicate didemnum sp. Tetrahedron Lett. 1988;29:1177-80. [68] Wonganuchitmeta SN, Yuenyongsawad S, Keawpradub N, Plubrukarn A. Antitubercular sesterterpenes from the Thai sponge Brachiaster sp. J Nat Prod. 2004;67:1767-70. [69] Kwon OS, Kim D, Kim CK, Sun J, Sim CJ, Oh DC, et al. Cytotoxic scalarane sesterterpenes from the sponge hyrtios erectus. Mar Drugs. 2020;18:253. [70] Jaisamut S, Thengyai S, Yuenyongsawad S, Karalai C, Plubrukarn A, Suwanborirux K. Structure-activity relationships of antitubercular scalaranes: Heteronemin revisited. Pure Appl Chem. 2009;81:1019-26. [71] Süntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. 2020;19:1199-209. [72] Nunes R, Arantes MB, Menezes S, Pereira DF, Leandro L, Passos MDS, et al. Plants as sources of anti-inflammatory Agents. Molecules. 2020;25:3726. [73] Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578. [74] Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 2020;17:3376. [75] Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics. 2020;9:170. [76] Weller MG. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors. 2012;12:9181-209. [77] Majumder R, Das CK, Mandal M. Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacol Res. 2019;148: 104416. [78] Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33:1582-614. [79] Che CT, Zhang H. Plant natural products for human health. Int J Mol Sci. 2019;20: 830. [80] Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3:200-1. [81] Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: a systematic drug-ability investigation. Eur J Med Chem. 2022;232: 114173. [82] Luo X, Pires D, Aínsa JA, Gracia B, Mulhovo S, Duarte A, et al. Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J Ethnopharmacol. 2011;137:114-20. [83] Luo X, Pedro L, Milic V, Mulhovo S, Duarte A, Duarte N, et al. Antibacterial benzofuran neolignans and benzophenanthridine alkaloids from the roots of Zanthoxylum capense. Planta Med. 2012;78:148-53. [84] Luo X, Pires D, Aínsa JA, Gracia B, Duarte N, Mulhovo S, et al. Zanthoxylum capense constituents with antimycobacterial activity against Mycobacterium tuberculosis in vitro and ex vivo within human macrophages. J Ethnopharmacol. 2013;146:417-22. [85] Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, et al. Insights on antitumor activity and mechanism of natural benzophenanthridine alkaloids. Molecules. 2023;28:6588. [86] Sureram S, Senadeera SPD, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012;22:2902-5. [87] Weber C, Opatz T. Bisbenzylisoquinoline alkaloids. Alkaloids Chem Biol. 2019;81:1-114. [88] Macabeo APG, Vidar WS, Chen X, Decker M, Heilmann J, Wan B, et al. Mycobacterium tuberculosis and cholinesterase inhibitors from Voacanga globosa. Eur J Med Chem. 2011;46:3118-23. [89] de Jesus MSM, Macabeo APG, Ramos JDA, de Leon VNO, Asamitsu K, Okamoto T. Voacanga globosa spirobisindole alkaloids exert antiviral activity in HIV latently infected cell lines by targeting the NF-kB cascade: In Vitro and in silico investigations. Molecules. 2022;27:1078. [90] Vongvanich N, Kittakoop P, Charoenchai P, Intamas S, Sriklung K, Thebtaranonth Y. Antiplasmodial, antimycobacterial, and cytotoxic principles from Camchaya calcarea. Planta Med. 2006;72:1427-30. [91] Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M, et al. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther. 2014;27:114-20. [92] Chandra P, Sharma RK, Arora DS. Antioxidant compounds from microbial sources: a review. Food Res Int. 2020;129: 108849. [93] Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI. Microbial natural products in drug discovery. Processes. 2020;8:470. [94] Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601-6. [95] Wolfender JL, Litaudon M, Touboul D, Queiroz EF. Innovative omics-based approaches for prioritisation and targeted isolation of natural products-new strategies for drug discovery. Nat Prod Rep. 2019;36:855-68. [96] Lauritano C, Ferrante MI, Rogato A. Marine natural products from microalgae: an-omics overview. Mar Drugs. 2019;17:269. [97] Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, et al. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;10:1404. [98] Ueoka R, Bhushan A, Probst SI, Bray WM, Lokey RS, Linington RG, et al. Genome-based identification of a plant-associated marine bacterium as a rich natural product source. Angew Chem. 2018;130:14727-31. [99] Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive compounds isolated from marine-derived microbes in China: 2009-2018. Mar Drugs. 2019;17:339. [100] Niu G, Li W. Next-generation drug discovery to combat antimicrobial resistance. Trends Biochem Sci. 2019;44:961-72. [101] Wang YN, Meng LH, Wang BG. Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms. Mar Drugs. 2020;18:614. [102] Lin Z, Koch M, Pond CD, Mabeza G, Seronay RA, Concepcion GP, et al. Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J Antibiot. 2014;67:121-6. [103] Braddock AA, Theodorakis EA. Marine spirotetronates: biosynthetic edifices that inspire drug discovery. Mar Drugs. 2019;17:232. [104] Supong K, Thawai C, Suwanborirux K, Choowong W, Supothina S, Pittayakhajonwut P. Antimalarial and antitubercular C-glycosylated benz[α]anthraquinones from the marine-derived Streptomyces sp. BCC45596. Phytochem Lett. 2012;5:651-6. [105] Luo X, Zhou X, Lin X, Qin X, Zhang T, Wang J, et al. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat Prod Res. 2017;31:1958-62. [106] Seephonkai P, Isaka M, Kittakoop P, Palittapongarnpim P, Kamchonwongpaisan S, Tanticharoen M, et al. Evaluation of antimycobacterial, antiplasmodial and cytotoxic activities of preussomerins isolated from the lichenicolous fungus Microsphaeropsis sp. BCC 3050. Planta Med. 2002;68:45-8. [107] Salvatore MM, Alves A, Andolfi A. Secondary metabolites of lasiodiplodia theobromae: distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins. 2020;12:457. [108] Pruksakorn P, Arai M, Kotoku N, Vilchze C, Baughn AD, Moodley P, et al. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic Med Chem Lett. 2010;20:3658-63. [109] Kavianinia I, Kunalingam L, Harris PWR, Cook GM, Brimble MA. Total synthesis and stereochemical revision of the anti-tuberculosis peptaibol trichoderin A. Org Lett. 2016;18:3878-81. [110] Keam SJ. Pretomanid: first approval. Drugs. 2019;79:1797-803. [111] Shee S, Singh S, Tripathi A, Thakur C, T AK, Das M, et al. Moxifloxacin-mediated killing of Mycobacterium tuberculosis involves respiratory downshift, reductive stress, and accumulation of reactive oxygen species. Antimicrob Agents Chemother. 2022;66: e00592-22. [112] Bemer-Melchior P, Bryskier A, Drugeon HB. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother. 2000;46:571-5. [113] Khatri Chhetri B, Bhanushali R, Liang Y, Cepeda MR, Niradininoco AK, Soapi K, et al. Isolation and characterization of anti-mycobacterial natural products from a Petrosia sp. marine sponge. J Nat Prod. 2023;86:574-81. [114] Strong EJ, Tan L, Hayes S, Whyte H, Davis RA, West NP. Identification of axinellamines A and B as anti-tubercular agents. Mar Drugs. 2024;22:298. [115] Gurgul A, Nauman MC, Wu Z, Shetye G, Ma R, Youn I, et al. Chemical constituents of the stem of Marsypopetalum modestum and their bioactivities. Nat Prod Res. 2023;37:3623-30. [116] Shakeri A, Tajvar M, Tabrizi GT, Soleimanpour S, Davoodi J, Asili J, et al. Bioassay-guided isolation and structure elucidation of anti-mycobacterium tuberculosis compounds from Galatella grimmii (Regel & Schmalh.) Sennikov. BMC Complement Med Ther. 2024;24:345. [117] Oloya B, Namukobe J, Heydenreich M, Ssengooba W, Martin J, Möller HM, et al. Two new compounds and the anti-mycobacterial activity of the constituents from Zanthoxylum leprieurii root bark. Phytochem Lett. 2023;54:107-13. [118] Yu J, Guo H, Zhang J, Hu J, He H, Chen C, et al. Chrysomycins, anti-tuberculosis C-glycoside polyketides from Streptomyces sp. MS751. Mar Drugs. 2024;22:259. [119] Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, et al. Evaluation of biological activity of natural compounds: current trends and methods. Molecules. 2022;27:4490. [120] Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22:317-35. [121] Kabongo-Kayoka PN, Eloff JN, Obi CL, McGaw LJ. Antimycobacterial activity and low cytotoxicity of leaf extracts of some African Anacardiaceae tree species. Phytother Res. 2016;30:2001-11. [122] Guittat L, De Cian A, Rosu F, Gabelica V, De Pauw E, Delfourne E, et al. Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro. Biochim Biophys Acta. 2005;1724:375-84. |
| [1] | Huimin Zhao, Yuyang Wang, Zining Liu, Lin Lin, Jiasi Xiang, Zihao Zhu, Xiongli Yang, Yongsheng Fang, Lingmei Kong, Yan Li. Synthesis and biological activity study of tanshinone I-pyridinium salt derivatives [J]. Natural Products and Bioprospecting, 2025, 15(5): 51-51. |
| [2] | Chuan-Su Liu, Bing-Chao Yan, Han-Dong Sun, Jin-Cai Lu, Pema-Tenzin Puno. Bridging chemical space and biological efficacy: advances and challenges in applying generative models in structural modification of natural products [J]. Natural Products and Bioprospecting, 2025, 15(4): 37-37. |
| [3] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023) [J]. Natural Products and Bioprospecting, 2025, 15(2): 13-13. |
| [4] | María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract [J]. Natural Products and Bioprospecting, 2025, 15(1): 4-4. |
| [5] | Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis [J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10. |
| [6] | Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products [J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37. |
| [7] | Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2 [J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40. |
| [8] | Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease [J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2. |
| [9] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data [J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7. |
| [10] | Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products [J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47. |
| [11] | Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway [J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34. |
| [12] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery [J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35. |
| [13] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery [J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37. |
| [14] | Ji-Kai Liu. Natural products in cosmetics [J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40. |
| [15] | Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis [J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
