[1] Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. [2] Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating immunotherapy and targeted therapy in cancer treatment: mechanistic insights and clinical implications. Clin Cancer Res. 2020;26(21):5557-66. [3] Boshuizen J, Peeper DS. Rational cancer treatment combinations: an urgent clinical need. Mol Cell. 2020;78(6):1002-18. [4] Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. STTT. 2021;6(1):201. [5] Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024;22(3):195-211. [6] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. [7] Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 - September 2012). Expert Opin Ther Pat. 2013;23(1):19-29. [8] Dong Y, Morris-Natschke SL, Lee KH. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep. 2011;28(3):529-42. [9] Gao H, Liu X, Sun W, Kang N, Liu Y, Yang S, et al. Total tanshinones exhibits anti-inflammatory effects through blocking TLR4 dimerization via the MyD88 pathway. Cell Death Dis. 2017;8(8): e3004. [10] Shi M, Luo X, Ju G, Li L, Huang S, Zhang T, et al. Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem. 2016;64(12):2523-30. [11] Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, et al. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep. 2017;7(1):10554. [12] Wu Q, Zheng K, Huang X, Li L, Mei W. Tanshinone-IIA-based analogues of imidazole alkaloid act as potent inhibitors to block breast cancer invasion and metastasis in vivo. J Med Chem. 2018;61(23):10488-501. [13] Xue Z, Li CY, Zhu GH, Song LL, Zhao YW, Ma YH, et al. Discovery of tetrahydro tanshinone I as a naturally occurring covalent pan-inhibitor against gut microbial bile salt hydrolases. J Agric Food Chem. 2024;72(42):23233-45. [14] Zhu W, Bao X, Yang Y, Xing M, Xiong S, Chen S, et al. Peripheral evolution of tanshinone IIA and cryptotanshinone for discovery of a potent and specific NLRP3 inflammasome inhibitor. J Med Chem. 2025;68(3):3460-79. [15] Ding C, Tian Q, Li J, Jiao M, Song S, Wang Y, et al. Structural modification of natural product Tanshinone I leading to discovery of novel nitrogen-enriched derivatives with enhanced anticancer profile and improved drug-like properties. J Med Chem. 2018;61(3):760-76. [16] Wang W, Li J, Ding Z, Li Y, Wang J, Chen S, et al. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med. 2019;23(9):6454-65. [17] Zhou J, Jiang YY, Chen H, Wu YC, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif. 2020;53(2): e12739. [18] Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, et al. Research and development of natural product tanshinone I: pharmacology, total synthesis, and structure modifications. Front Pharmacol. 2022;13:920411. [19] Liu Y, Li X, Li Y, Wang L, Xue M. Simultaneous determination of danshensu, rosmarinic acid, cryptotanshinone, tanshinone IIA, tanshinone I and dihydrotanshinone I by liquid chromatographic-mass spectrometry and the application to pharmacokinetics in rats. J Pharm Biomed Anal. 2010;53(3):698-704. [20] Park EJ, Ji HY, Kim NJ, Song WY, Kim YH, Kim YC, et al. Simultaneous determination of tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study of a standardized fraction of Salvia miltiorrhiza, PF2401-SF. Biomed Chromatogr. 2008;22(5):548-55. [21] Yu H, Subedi RK, Nepal PR, Kim YG, Choi HK. Enhancement of solubility and dissolution rate of cryptotanshinone, tanshinone I and tanshinone IIA extracted from Salvia miltiorrhiza. Arch Pharm Res. 2012;35(8):1457-64. [22] Deng G, Zhou B, Wang J, Chen Z, Gong L, Gong Y, et al. Synthesis and antitumor activity of novel steroidal imidazolium salt derivatives. Eur J Med Chem. 2019;168:232-52. [23] Liu Z, Zhang Y, Dong J, Fang Y, Jiang Y, Yang X, et al. Synthesis and antitumor activity of novel hybrid compounds between 1,4-benzodioxane and imidazolium salts. Arch Pharm. 2022;355(10): e2200109. [24] Yin M, Fang Y, Sun X, Xue M, Zhang C, Zhu Z, et al. Synthesis and anticancer activity of podophyllotoxin derivatives with nitrogen-containing heterocycles. Front Chem. 2023;11:1191498. [25] Zhou H, Yu C, Kong L, Xu X, Yan J, Li Y, et al. B591, a novel specific pan-PI3K inhibitor, preferentially targets cancer stem cells. Oncogene. 2019;38(18):3371-86. [26] Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, et al. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem. 2024;16(1):12-36. [27] Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57(24):10257-74. [28] Albratty M, Alhazmi HA. Novel pyridine and pyrimidine derivatives as promising anticancer agents: a review. Arab J Chem. 2022;15(6):103846. [29] Xu T, Xue Z, Li X, Zhang M, Yang R, Qin S, et al. Development of membrane-targeting osthole derivatives containing pyridinium quaternary ammonium moieties with potent anti-methicillin-resistant Staphylococcus aureus properties. J Med Chem. 2025;68(7):7459-75. [30] Mishra T, Gupta S, Rai P, Khandelwal N, Chourasiya M, Kushwaha V, et al. Anti-adipogenic action of a novel oxazole derivative through activation of AMPK pathway. Eur J Med Chem. 2023;262:115895. [31] Varma MV, Kaushal AM, Garg S. Rapid and selective UV spectrophotometric and RP-HPLC methods for dissolution studies of oxybutynin immediate-release and controlled-release formulations. J Pharm Biomed Anal. 2004;36(3):669-74. [32] Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in human disease. Cell. 2017;170(4):605-35. [33] Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606-19. [34] Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, et al. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer. 2022;13(13):3434-43. [35] Jia WQ, Luo SY, Guo H, Kong D. Development of PI3Kα inhibitors for tumor therapy. J Biomol Struct Dyn. 2023;41(17):8587-604. |