[1] Steimer T. Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci. 2011;13(4):495-506. [2] Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19(2):93-107. [3] Ravindran LN, Stein MB. The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry. 2010;71(7):839-54. [4] Graf H, Walter M, Metzger CD, Abler B. Antidepressant-related sexual dysfunction—perspectives from neuroimaging. Pharmacol Biochem Behav. 2014;121:138-45. [5] Biney RP, Benneh CK, Kyekyeku JO, Ameyaw EO, Boakye-Gyasi E, Woode E. Attenuation of anxiety behaviours by xylopic acid in mice and zebrafish models of anxiety disorder. Pharm Biosci J. 2018. https://doi.org/10.20510/ukjpb/6/i3/173546. [6] Santarsieri D, Schwartz TL. Antidepressant efficacy and side-effect burden: a quick guide for clinicians. Drugs Context. 2015;4:1-12. [7] Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov. 2013;12(9):667-87. [8] Khan A, Akram M, Thiruvengadam M, Daniyal M, Zakki SA, Munir N, et al. Anti-anxiety properties of selected medicinal plants. Curr Pharm Biotechnol. 2022;23(8):1041-60. [9] Burkill HM. The useful plants of West Tropical Africa. Vol 1: families A-D. 2nd ed. Royal Botanic Gardens, Kew; 1985. [10] Adongo DW, Mante PK, Edem Kukuia KK, Ameyaw EO, Woode E, Azi IH. Anxiolytic-like effect of the leaves of Pseudospondias microcarpa (A. Rich.) Engl. in mice. J Basic Clin Physiol Pharmacol. 2016;27(5):533-46. [11] Adongo DW, Kukuia KKE, Mante PK, Ameyaw EO, Woode E. Antidepressant-like effect of the leaves of Pseudospondias microcarpa in mice: evidence for the involvement of the serotoninergic system, NMDA receptor complex, and nitric oxide pathway. BioMed Res Int. 2015. https://doi.org/10.1155/2015/397943. [12] Adongo DW, Mante PK, Kukuia KKE, Woode E. Preclinical evidence of a rapid-onset antidepressant-like effect of Pseudospondias microcarpa hydroethanolic leaf extract in a chronic depression model. In: Proceedings of the Woode E Preclinical evidence of a rapid-onset antidepressant-like effect of Pseudospondias microcarpa hydroethanolic leaf extract in a chronic depression model International Journal of Basic Clinical Pharmacology, vol. 5. 2016. p. 1254-62. [13] Adongo DW, Mante PK, Kukuia KKE, Benneh CK, Biney RP, Boakye-Gyasi E, et al. Fast-onset effects of Pseudospondias microcarpa (A. Rich) Engl. (Anacardiaceae) hydroethanolic leaf extract on behavioral alterations induced by chronic mild stress in mice. PLoS ONE. 2023;18(2):e0278231. [14] Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov. 2005;4(9):775-90. [15] Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: more zebrafish models for neuroscience research. Amsterdam: Elsevier; 2014. p. 1-6. [16] Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63-75. [17] Stewart AM, Ullmann JF, Norton WH, Parker M, Brennan C, Gerlai R, et al. Molecular psychiatry of zebrafish. Mol Psychiatry. 2015;20(1):2-17. [18] Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, et al. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol. 2017;174(13):1925-44. [19] Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503. [20] Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a useful tool in the research of natural products with potential anxiolytic effects. Front Behav Neurosci. 2022;15:356. [21] Cianca V, Bartolini T, Porfiri M, Macrì S. A robotics-based behavioral paradigm to measure anxiety-related responses in zebrafish. PLoS ONE. 2013;8(7):e69661. [22] Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205(1):38-44. [23] Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 2012;62(1):135-43. [24] Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(6):1421-31. [25] Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav. 2009;94(1):75-80. [26] Benneh CK, Biney RP, Mante PK, Tandoh A, Adongo DW, Woode E. Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—involvement of GABAergic and 5-HT systems. J Ethnopharmacol. 2017;207:129-45. [27] Maximino C, da Silva AWB, Gouveia A Jr, Herculano AM. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):624-31. [28] Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70-86. [29] Magno LDP, Fontes A, Gonçalves BMN, Gouveia A. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): waterborne administration. Pharmacol Biochem Behav. 2015;135:169-76. [30] Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE. 2013;8(5):e63302. [31] Piato ÂL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJ, Bogo MR, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):561-7. [32] Abdul Rahim N, Nordin N, Ahmad Rasedi NIS, Mohd Kauli FS, Wan Ibrahim WN, Zakaria F. Behavioral and cortisol analysis of the anti-stress effect of Polygonum minus (Huds) extracts in chronic unpredictable stress (CUS) zebrafish model. Comp Biochem Physiol C. 2022;256:109303. [33] Wu J, Yan B, Bao M, Shen J, Zheng P, Wu D, et al. Early life exposure to chronic unpredictable stress induces anxiety-like behaviors and increases the excitability of cerebellar neurons in zebrafish. Behav Brain Res. 2023;437:114160. [34] Biney RP, Benneh CK, Adongo DW, Ameyaw EO, Woode E. Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms. Psychopharmacology. 2021;238(8):2105-20. [35] Zwanzger P, Eser D, Nothdurfter C, Baghai T, Möller H-J, Padberg F, et al. Effects of the GABA-reuptake inhibitor tiagabine on panic and anxiety in patients with panic disorder. Pharmacopsychiatry. 2009;42(06):266-9. [36] Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010;1352:167-75. [37] Kim Y-J, Nam R-H, Yoo YM, Lee C-J. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett. 2004;355(1-2):29-32. [38] Mussulini BHM, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS ONE. 2013;8(1):e54515. [39] Çiçek SS. Structure-dependent activity of natural GABA (A) receptor modulators. Molecules. 2018;23(7):1512. [40] Mendes Hacke AC, Miyoshi E, Marques JA, Pereira RP. Anxiolytic properties of Cymbopogon citratus (DC.) stapf extract, essential oil and its constituents in zebrafish (Danio rerio). J Ethnopharmacol. 2020;260:113036. [41] Adongo DW, Mante PK, Kukuia KKE, Biney RP, Boakye-Gyasi E, Benneh CK, et al. Anticonvulsant activity of Pseudospondias microcarpa (A. Rich) Engl. hydroethanolic leaf extract in mice: the role of excitatory/inhibitory neurotransmission and nitric oxide pathway. J Ethnopharmacol. 2017;206:78-91. [42] Maximino C. Nodal structures in anxiety-like and panic-like responses. In: Serotonin and Anxiety. Springer Briefs in Neuroscience. New York, NY: Springer; 2012. pp. 37-78. |