Natural Products and Bioprospecting ›› 2023, Vol. 13 ›› Issue (5): 34-34.DOI: 10.1007/s13659-023-00401-3
• ORIGINAL ARTICLES • Previous Articles Next Articles
Dalila Carbone1, Carmela Gallo1, Genoveffa Nuzzo1, Giusi Barra1, Mario Dell'Isola1, Mario Affuso2, Olimpia Follero1, Federica Albiani2, Clementina Sansone3, Emiliano Manzo1, Giuliana d'Ippolito1, Angelo Fontana1,2
Received:
2023-08-01
Online:
2023-11-03
Published:
2023-10-24
Contact:
Carmela Gallo,E-mail:carmen.gallo@icb.cnr.it
Supported by:
Dalila Carbone1, Carmela Gallo1, Genoveffa Nuzzo1, Giusi Barra1, Mario Dell'Isola1, Mario Affuso2, Olimpia Follero1, Federica Albiani2, Clementina Sansone3, Emiliano Manzo1, Giuliana d'Ippolito1, Angelo Fontana1,2
通讯作者:
Carmela Gallo,E-mail:carmen.gallo@icb.cnr.it
基金资助:
Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34.
Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. 应用天然产物, 2023, 13(5): 34-34.
[1] Milone MC, Xu J, Chen S-J, Collins MA, Zhou J, Powell DJ, Melenhorst JJ. Engineering-enhanced CAR T cells for improved cancer therapy. Nat Cancer. 2021;2:780-93. https://doi.org/10.1038/s43018-021-00241-5. [2] Franzin R, Netti GS, Spadaccino F, Porta C, Gesualdo L, Stallone G, Castellano G, Ranieri E. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI where do we stand? Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.574271. [3] Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11:3. https://doi.org/10.1186/s40164-022-00257-2. [4] Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest. 2008;118:1991-2001. https://doi.org/10.1172/JCI35180. [5] Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51-72. [6] Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11:1013. [7] Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14:2994-3006. [8] Abdel-Bar HM, Walters AA, Lim Y, Rouatbi N, Qin Y, Gheidari F, Han S, Osman R, Wang JTW, Al-Jamal KT. An “eat me” combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics. 2021;11:8738-54. https://doi.org/10.7150/thno.56936. [9] Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23:4854-65. https://doi.org/10.1111/jcmm.14356. [10] Liu P, Zhao L, Kepp O, Kroemer G. Quantitation of calreticulin exposure associated with immunogenic cell death. Methods Enzymol. 2020;632:1-13. [11] Brown GC, Neher JJ. Eaten alive! cell death by primary phagocytosis: ‘phagoptosis.’ Trends Biochem Sci. 2012;37:325-32. https://doi.org/10.1016/j.tibs.2012.05.002. [12] Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharm Res. 2019;42:629-45. [13] Sansone C, Bruno A, Piscitelli C, Baci D, Fontana A, Brunet C, Noonan DM, Albini A. Natural compounds of marine origin as inducers of immunogenic cell death (ICD): potential role for cancer interception and therapy. Cells. 2021;10:1-20. [14] Flieswasser T, Van Loenhout J, Freire Boullosa L, Van den Eynde A, De Waele J, Van Audenaerde J, Lardon F, Smits E, Pauwels P, Jacobs J. Clinically relevant chemotherapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer. Cells. 2020;9:1474. https://doi.org/10.3390/cells9061474. [15] Ma F, He C, Wang E, Tong R. Collective asymmetric total syntheses of marine decahydroquinoline alkaloid lepadins A-E, H, and ent-I. Org Lett. 2021;23:6583-8. https://doi.org/10.1021/acs.orglett.1c02435. [16] Gallo C, Barra G, Saponaro M, Manzo E, Fioretto L, Ziaco M, Nuzzo G, d’Ippolito G, De Palma R, Fontana A. A new bioassay platform design for the discovery of small molecules with anticancer immunotherapeutic activity. Mar Drugs. 2020. https://doi.org/10.3390/md18120604. [17] Nuzzo G, Gallo C, Crocetta F, Romano L, Barra G, Senese G, dell’Isola M, Carbone D, Tanduo V, Albiani F, et al. Identification of the marine alkaloid lepadin A as potential inducer of immunogenic cell death. Biomolecules. 2022. https://doi.org/10.3390/biom12020246. [18] Alves AC, Nunes C, Lima J, Reis S. Daunorubicin and doxorubicin molecular interplay with 2D membrane models. Colloids Surf B Biointerfaces. 2017;160:610-8. https://doi.org/10.1016/j.colsurfb.2017.09.058. [19] Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00187. [20] Wang Y-J, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194-203. https://doi.org/10.1016/j.gendis.2018.05.003. [21] Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C, Engblom C, Rickelt S, Yamazaki T, Iribarren K, et al. Author correction: crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun. 1883;10:1883. https://doi.org/10.1038/s41467-019-09838-y. [22] Vigueras G, Markova L, Novohradsky V, Marco A, Cutillas N, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. A photoactivated Ir( [23] Silveyra E, Bologna-Molina R, Gónzalez-Gónzalez R, Arocena M. The tissue architecture of oral squamous cell carcinoma visualized by staining patterns of wheat germ agglutinin and structural proteins using confocal microscopy. Cells. 2021;10:2466. https://doi.org/10.3390/cells10092466. [24] Campbell KJ, Tait SW. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8:180002. https://doi.org/10.1098/rsob.180002. [25] Tan BS, Tiong KH, Choo HL, Fei-Lei Chung F, Hii L-W, Tan SH, Yap IK, Pani S, Khor NT, Wong SF, et al. Mutant P53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 2015;6:e1826-e1826. https://doi.org/10.1038/cddis.2015.191. [26] Gupta G, Borglum K, Chen H. Immunogenic cell death: a step ahead of autophagy in cancer therapy. J Cancer Immunol. 2021;3:47-59. https://doi.org/10.33696/cancerimmunol.3.041.Immunogenic. [27] Qi X, Li Q, Che X, Wang Q, Wu G. Application of regulatory cell death in cancer: based on targeted therapy and immunotherapy. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.837293. [28] Sun S-C. CYLD: a tumor suppressor deubiquitinase regulating NF-ΚB activation and diverse biological processes. Cell Death Differ. 2010;17:25-34. https://doi.org/10.1038/cdd.2009.43. [29] Liang X, Lu J, Wu Z, Guo Y, Shen S, Liang J, Dong Z, Guo W. LINC00239 interacts with C-Myc promoter-binding protein-1 (MBP-1) to promote expression of C-Myc in esophageal squamous cell carcinoma. Mol Cancer Res. 2021;19:1465-75. https://doi.org/10.1158/1541-7786.MCR-20-1025. [30] Tu CC, Kumar VB, Day CH, Kuo WW, Yeh SP, Chen RJ, Liao CR, Chen HY, Tsai FJ, Wu WJ, et al. Estrogen receptor α (ESR1) over-expression mediated apoptosis in Hep3B cells by binding with SP1 proteins. J Mol Endocrinol. 2013;51:203-12. https://doi.org/10.1530/JME-13-0085. [31] Fabian KP, Wolfson B, Hodge JW. From immunogenic cell death to immunogenic modulation: select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.728018. [32] Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 2023;20:432-47. https://doi.org/10.1038/s41423-023-00990-6. [33] Steinman RM, Nussenzweig MC, Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685-711. https://doi.org/10.1146/annurev.immunol.21.120601.141040. [34] Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, Weiskopf K, Willingham SB, Raveh T, Park CY, Majeti R. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2014. https://doi.org/10.1126/scitranslmed.3001375. [35] Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun. 2011. https://doi.org/10.1038/ncomms1524. [36] Peckert-maier K, Langguth P, Strack A, Stich L, Mühl-zürbes P, Kuhnt C, Drassner C, Zinser E, Wrage M, Mattner J, et al. CD83 expressed by macrophages is an important immune checkpoint molecule for the resolution of inflammation. Front Immunol. 2023. https://doi.org/10.3389/fimmu.2023.1085742. [37] Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res. 2021;31:5-16. https://doi.org/10.1038/s41422-020-0383-9. [38] Schcolnik A, Bernardo C, Mandy O, Mayra J, Rivera C, Flisser A. Calreticulin in phagocytosis and cancer: opposite roles in immune response outcomes. Apoptosis. 2019;24:245-55. https://doi.org/10.1007/s10495-019-01532-0. [39] Lamberti MJ, Nigro A, Mentucci FM, Rumie Vittar NB, Casolaro V, Dal Col J. Dendritic cells and immunogenic cancer cell death: a combination for improving antitumor immunity. Pharmaceutics. 2020;12:256. https://doi.org/10.3390/pharmaceutics12030256. [40] Zhao L, Zhang S, Chen H, Kroemer G, Kepp O, Liu P. Interference of immunogenic chemotherapy by artificially controlled calreticulin secretion from tumor cells. Amsterdam: Elsevier; 2022. p. 99-114. [41] Sedlacek AL, Mandoiu II, Binder RJ, Sedlacek AL, Younker TP, Zhou YJ, Borghesi L, Shcheglova T, Mandoiu II, Binder RJ. Emerging tumors CD91 on dendritic cells governs immunosurveillance of nascent, emerging tumors. JCI Insight. 2019;4: e127239. [42] Huang FY, Lei J, Sun Y, Yan F, Chen B, Zhang L, Lu Z, Cao R, Lin YY, Wang CC, et al. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology. 2018;7: e1446720. https://doi.org/10.1080/2162402X.2018.1446720. [43] Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, Tsumura H. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11:2169-75. https://doi.org/10.3892/ol.2016.4175. [44] Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Thematic review series: sphingolipids. biodiversity of sphingoid bases (“Sphingosines”) and related amino alcohols. J Lipid Res. 2008;49:1621-39. https://doi.org/10.1194/jlr.R800012-JLR200. [45] Yang W, Zhang F, Deng H, Lin L, Wang S, Kang F, Yu G, Lau J, Tian R, Zhang M, et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano. 2020;14:620-31. https://doi.org/10.1021/acsnano.9b07212. [46] Cuvillier O, Nava VE, Murthy SK, Edsall LC, Levade T, Milstien S, Spiegel S. Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells. Cell Death Differ. 2001;8:162-71. https://doi.org/10.1038/sj.cdd.4400793. [47] Janneh AH, Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14:2183. https://doi.org/10.3390/cancers14092183. [48] Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691-701. https://doi.org/10.1084/jem.20050915. [49] Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD, et al. Trial watch?: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology. 2020. https://doi.org/10.1080/2162402X.2019.1703449. [50] Gallo C, Manzo E, Barra G, Fioretto L, Ziaco M, Nuzzo G, D’Ippolito G, Ferrera F, Contini P, Castiglia D, et al. Sulfavant A as the first synthetic TREM2 ligand discloses a homeostatic response of dendritic cells after receptor engagement. Cell Mol Life Sci. 2022;79:369. https://doi.org/10.1007/s00018-022-04297-z. [51] Sansone C, Pistelli L, Calabrone L, Del Mondo A, Fontana A, Festa M, Noonan DM, Albini A, Brunet C. The carotenoid diatoxanthin modulates inflammatory and angiogenesis pathways in vitro in prostate cancer cells. Antioxidants. 2023. https://doi.org/10.3390/antiox12020359. |
[1] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023) [J]. Natural Products and Bioprospecting, 2025, 15(2): 13-13. |
[2] | María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract [J]. Natural Products and Bioprospecting, 2025, 15(1): 4-4. |
[3] | Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis [J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10. |
[4] | Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products [J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37. |
[5] | Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2 [J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40. |
[6] | Antonio Evidente. Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012-2023) [J]. Natural Products and Bioprospecting, 2024, 14(4): 31-31. |
[7] | Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease [J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2. |
[8] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data [J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7. |
[9] | Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products [J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47. |
[10] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery [J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35. |
[11] | Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery [J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37. |
[12] | Ji-Kai Liu. Natural products in cosmetics [J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40. |
[13] | Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis [J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31. |
[14] | Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum [J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15. |
[15] | Ji-Kai Liu. Antiaging agents: safe interventions to slow aging and healthy life span extension [J]. Natural Products and Bioprospecting, 2022, 12(3): 18-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||