应用天然产物 ›› 2025, Vol. 15 ›› Issue (1): 6-6.DOI: 10.1007/s13659-024-00491-7
Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds
收稿日期:
2024-10-25
接受日期:
2024-12-16
出版日期:
2025-02-24
发布日期:
2025-02-15
通讯作者:
Gabin T. M. BITCHAGNO,E-mail:g.bitchagnombahbou@kew.org;Monique S. J. SIMMONDS,E-mail:m.simmonds@kew.org
基金资助:
Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds
Received:
2024-10-25
Accepted:
2024-12-16
Online:
2025-02-24
Published:
2025-02-15
Contact:
Gabin T. M. BITCHAGNO,E-mail:g.bitchagnombahbou@kew.org;Monique S. J. SIMMONDS,E-mail:m.simmonds@kew.org
Supported by:
摘要: The Plectranthinae clade, which includes genera such as Plectranthus, Ocimum, and Aeollanthus, is well known for its diverse array of diterpenoids. While numerous studies have deepened the understanding of diterpene diversity across the clade, Aeollanthus species remain underexplored, with only two studies focusing on their diterpene profiles. The NMR-based chemical profiling of the EtOAc leaf extract of the rocky and succulent species Aeollanthus buchnerianus Briq. reveals a range of diterpenes with isopimarane and abietane skeletons including several previously unreported analogues. Interestingly, the isolated compounds provided insights into the breakdown patterns of both diterpene classes by examining the product ions in their MS2 spectra. These data offer valuable information for evaluating the taxonomic position of this species in relation to other species within the clade.
Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds. Diterpene chemical space of Aeollanthus buchnerianus Briq. aerial part[J]. 应用天然产物, 2025, 15(1): 6-6.
Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds. Diterpene chemical space of Aeollanthus buchnerianus Briq. aerial part[J]. Natural Products and Bioprospecting, 2025, 15(1): 6-6.
[1] Grayer RJ, Paton AJ, Simmonds MSJ, Howes MJR. Differences in diterpenoid diversity reveal new evidence for separating the genus: Coleus from Plectranthus. Nat Prod Rep. 2021;38:1720–8. https://doi.org/10.1039/d0np00081g. [2] Gáborová M, Šmejkal K, Kubínová R. Abietane diterpenes of the genus Plectranthus sensu lato. Molecules. 2022. https://doi.org/10.3390/molecules27010166. [3] Paton AJ, Springate D, Suddee S, Otieno D, Grayer RJ, Harley MM, Willis F, Simmonds MSJ, Powell MP, Savolainen V. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Mol Phylogenet Evol. 2004;31:277–99. https://doi.org/10.1016/j.ympev.2003.08.002. [4] Ryding O. The genus Aeollanthus S. Lat. (Labiatae). Symb Bot Ups. 1986;XXVI:130–1. [5] Lupe FA, Lemes AC, Augusto F, Barata LES. Fragrant lactones in the steam distillation residue of Aeollanthus suaveolens Mart. Ex spreng and analysis by HS—SPME. J Essent Oil Res. 2007;19:271–2. https://doi.org/10.1080/10412905.2007.9699277. [6] Bohounton RB, Djogbénou LS, Djihinto OY, Dedome OSL, Sovegnon PM, Barea B, Adomou A, Villeneuve P, Tchobo FP. Chemical composition and the insecticidal activity of Aeollanthus pubescens leaf essential oil against Anopheles gambiae sensu stricto. Parasit Vectors. 2021;14:1–11. https://doi.org/10.1186/s13071-021-05012-w. [7] Martins RL, Simões RC, De Rabelo ÉM, Farias ALF, Rodrigues ABL, Da Ramos RS, Fernandes JB, Da Santos LS, De Almeida SSMDS. Chemical composition, an antioxidant, cytotoxic and microbiological activity of the essential oil from the leaves of Aeollanthus suaveolens Mart. Ex spreng. PLoS ONE. 2016;11:1–10. https://doi.org/10.1371/journal.pone.0166684. [8] Dellar JE, Cole MD, Waterman PG. Unusual antimicrobial compounds from Aeollanthus buchnerianus. Experientia. 1996;52:175–9. https://doi.org/10.1007/BF01923365. [9] Rijo P, Simões MF, Duarte A, Rodríguez B. Isopimarane diterpenoids from Aeollanthus rydingianus and their antimicrobial activity. Phytochemistry. 2009;70:1161–5. https://doi.org/10.1016/j.phytochem.2009.06.008. [10] Chang LC, Song LL, Park EJ, Luyengi L, Lee KJ, Farnsworth NR, Pezzuto JM, Kinghorn AD. Bioactive constituents of Thuja occidentalis. J Nat Prod. 2000;63:1235–8. https://doi.org/10.1021/np0001575. [11] Tanaka R, Ohtsu H, Matsunaga S. Abietane diterpene acids and other constituents from the leaves of Larix kaempferi. Phytochemistry. 1997;46:1051–7. https://doi.org/10.1016/S0031-9422(97)84396-8. [12] Seca AML, Pinto DCGA, Silva AMS. Structural elucidation of pimarane and isopimarane diterpenoids: the 13C NMR contribution. Nat Prod Commun. 2008;3:399–412. [13] Hu CL, Xiong J, Gao LX, Li J, Zeng H, Zou Y, Hu JF. Diterpenoids from the shed trunk barks of the endangered plant: Pinus dabeshanensis and their PTP1B inhibitory effects. RSC Adv. 2016;6:60467–78. https://doi.org/10.1039/c6ra08986k. [14] Yang XW, Feng L, Li SM, Liu XH, Li YL, Wu L, Shen YH, Tian JM, Zhang X, Liu XR, Wang N, Liu Y, Zhang WD. Isolation, structure, and bioactivities of abiesadines A-Y, 25 new diterpenes from Abies georgei orr. Bioorganic Med Chem. 2010;18:744–54. https://doi.org/10.1016/j.bmc.2009.11.055. [15] Esquivel B, del Socorro MN, Cárdenas J, Ramamoorthy T, Rodríguez-Hahn L. The pimarane-type diterpenoids of Salvia microphylla var. Neurepia Planta Med. 1989. https://doi.org/10.1055/s-2006-961827. [16] Wu ZY, Zhang YB, Zhu KK, Luo C, Zhang JX, Cheng CR, Feng RH, Yang WZ, Zeng F, Wang Y, Xu PP, Guo JL, Liu X, Guan SH, Guo DA. Anti-inflammatory diterpenoids from the root bark of Acanthopanax gracilistylus. J Nat Prod. 2014;77:2342–51. https://doi.org/10.1021/np500125x. [17] Fernandez ACAM, Rosa MF, Fernandez CMMC, Bortolucci W, Melo UZ, Siqueira VLD, Cortez DAG, Gonçalves JE, Linde GA, Gazim ZC. Antimicrobial and antioxidant activities of the extract and fractions of Tetradenia riparia (Hochst.) Codd (Lamiaceae) Leaves from Brazil. Curr Microbiol. 2017;74:1453–60. https://doi.org/10.1007/s00284-017-1340-9. [18] Gazim ZC, Rodrigues F, Amorin ACL, De Rezende CM, Sokovic M, Teševic V, Vuckovic I, Krstic G, Cortez LER, Colauto NB, Linde GA, Cortez DAG. New natural diterpene-type abietane from Tetradenia riparia essential oil with cytotoxic and antioxidant activities. Molecules. 2014;19:514–24. https://doi.org/10.3390/molecules19010514. |
[1] | Wenta Tan, Shuo Fu, Yufei Wang, Bojun Hu, Guiquan Ding, Li Zhang, Wen Zhang, Guanhua Du, Junke Song. Metabolomic and transcriptomic analyses revealed potential mechanisms of Anchusa italica Retz. in alleviating cerebral ischemia-reperfusion injury via Wnt/β-catenin pathway modulation[J]. 应用天然产物, 2025, 15(2): 11-11. |
[2] | Huan Wang, Han-Fei Liu, Xiao-Qiao Yang, Yu-Qiong Liao, Fen-Cong Pan, Jin-Yu Li, Hua-Yong Lou, Wei-Dong Pan. Novel neo-clerodane diterpenoids from Teucrium quadrifarium and their anti-ferroptosis effect[J]. 应用天然产物, 2025, 15(1): 8-8. |
[3] | Shuruq Alsuhaymi, Upendra Singh, Inas Al-Younis, Najeh M. Kharbatia, Ali Haneef, Kousik Chandra, Manel Dhahri, Mohammed A. Assiri, Abdul-Hamid Emwas, Mariusz Jaremko. Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR[J]. 应用天然产物, 2023, 13(6): 44-44. |
[4] | Orawan Jongsomjainuk, Jutatip Boonsombat, Sanit Thongnest, Hunsa Prawat, Paratchata Batsomboon, Sitthivut Charoensutthivarakul, Saroj Ruchisansakun, Kittipong Chainok, Jitnapa Sirirak, Chulabhorn Mahidol, Somsak Ruchirawat. Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis[J]. 应用天然产物, 2023, 13(6): 55-55. |
[5] | Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines[J]. 应用天然产物, 2023, 13(6): 43-43. |
[6] | Yang Yu, Yang Wang, Gui-Chun Wang, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity[J]. 应用天然产物, 2023, 13(5): 31-31. |
[7] | Asih Triastuti, Marieke Vansteelandt, Fatima Barakat, Carlos Amasifuen, Patricia Jargeat, Mohamed Haddad. Untargeted metabolomics to evaluate antifungal mechanism: a study of Cophinforma mamane and Candida albicans interaction[J]. 应用天然产物, 2023, 13(1): 1-1. |
[8] | Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05[J]. 应用天然产物, 2022, 12(4): 27-27. |
[9] | Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. 应用天然产物, 2020, 10(5): 307-316. |
[10] | Xiao-Feng He, Chang-An Geng, Xiao-Yan Huang, Yun-Bao Ma, Xue-Mei Zhang, Ji-Jun Chen. Chemical Constituents from Mentha haplocalyx Briq. (Mentha canadensis L.) and Their α-Glucosidase Inhibitory Activities[J]. 应用天然产物, 2019, 9(3): 223-229. |
[11] | Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products[J]. 应用天然产物, 2018, 8(4): 321-334. |
[12] | Yuan-Liang Ma, Xiao-Han Tang, Wen-Juan Yuan, Xiao Ding, Ying-Tong Di, Xiao-Jiang Hao. Abietane Diterpernoids from the Roots of Euphorbia ebracteolata[J]. 应用天然产物, 2018, 8(2): 131-135. |
[13] | Wen-Ting Chen, Lin-Fu Liang, Xu-Wen Li, Wei Xiao, Yue-Wei Guo. Further New Highly Oxidative Cembranoids from the Hainan Soft Coral Sarcophyton trocheliophorum[J]. 应用天然产物, 2016, 6(2): 97-102. |
[14] | Hao Wen, Yan Li, Xingzhong Liu, Wencai Ye, Xinsheng Yao, Yongsheng Che. Fusagerins A-F, New Alkaloids from the Fungus Fusarium sp.[J]. 应用天然产物, 2015, 5(4): 195-203. |
[15] | Frank Surup, Eric Kuhnert, Elena Liscinskij, Marc Stadler. Silphiperfolene-Type Terpenoids and Other Metabolites from Cultures of the Tropical Ascomycete Hypoxylon rickii(Xylariaceae)[J]. 应用天然产物, 2015, 5(3): 167-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||