[1] WHO, World malaria report 2022. 2022: World Health Organization. [2] Menard D, Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7(7): a025619. [3] Takala-Harrison S, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211(5):670-9. [4] Wells TNC. Natural products as starting points for future anti-malarial therapies: going back to our roots? Malar J. 2011;10(1):S3. [5] Gaillard T, et al. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malar J. 2016;15(1):556. [6] Organization WH. Guidelines for the treatment of malaria. 2015: World Health Organization. [7] Spížek J, Řezanka T. Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol. 2004;64(4):455-64. [8] Nelson ML, Levy SB. The history of the tetracyclines. Ann N Y Acad Sci. 2011;1241(1):17-32. [9] Peters W. The evolution of tafenoquine—antimalarial for a new millennium? J R Soc Med. 1999;92(7):345-52. [10] Watson JA, Nekkab N, White M. Tafenoquine for the prevention of Plasmodium vivax malaria relapse. Lancet Microbe. 2021;2(5):e175-6. [11] Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-37. [12] Dührkop K, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16(4):299-302. [13] Chassagne F, et al. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products®. Phytochem Rev. 2019;18:601-22. [14] Egieyeh SA, et al. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malar J. 2016;15:1-23. [15] Kim HW, et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021;84(11):2795-807. [16] Djoumbou Feunang Y, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminformat. 2016;8:1-20. [17] Hai Y, et al. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep. 2022;39(5):969-90. [18] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. [19] Lipinski CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1):3-25. [20] Veber DF, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. [21] Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68. [22] Chakraborty D, Pal A. Quassinoids: chemistry and novel detection techniques. Berlin: Springer; 2013. p. 3345-66. [23] Duan Z-K, et al. Quassinoids: phytochemistry and antitumor prospect. Phytochemistry. 2021;187: 112769. [24] Kraus GA, Taschner MJ. Model studies for the synthesis of quassinoids. 1. Construction of the BCE ring system. J Org Chem. 1980;45(6):1175-6. [25] Herscovici J, et al. Stereocontrolled routes to functionalized [1,8-bc]naphthopyran. A study on the total synthesis of quassinoids and tetrahydronaphthalene antibiotics. J Org Chem. 1993;58(15):3928-37. [26] Gross RS, Grieco PA, Collins JL. Synthetic studies on quassinoids: total synthesis of (±)-chaparrinone. J Am Chem Soc. 1990;112(25):9436-7. [27] Ziegler FE, et al. Practical routes to two functionalized decalones for the synthesis of quassinoids. J Org Chem. 1986;51(24):4573-9. [28] Thomas WP, Pronin SV. A concise enantioselective approach to quassinoids. J Am Chem Soc. 2021;144(1):118-22. [29] Pazur EJ, Wipf P. Recent syntheses and biological profiling of quassinoids. Org Biomol Chem. 2022;20(19):3870-89. [30] Kawada K, Kim M, Watt DS. Synthesis of quassinoids. A review. Org Prep Proc Int. 1989;21(5):521-618. [31] O’Neill MJ, et al. Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids. Antimicrob Agents Chemother. 1986;30(1):101-4. [32] O’Neill MJ, et al. Plants as sources of antimalarial drugs, Part 4: Activity of Brucea javanica fruits against chloroquine-resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo. J Nat Prod. 1987;50(1):41-8. [33] Tay DW, et al. 67 million natural product-like compound database generated via molecular language processing. Sci Data. 2023;10(1):296. [34] Li Y, et al. Designing natural product-like virtual libraries using deep molecule generative models. Macromolecules. 2018;3:5. [35] Yu MJ. Natural product-like virtual libraries: recursive atom-based enumeration. J Chem Inf Model. 2011;51(3):541-57. [36] Abd Karim HA, Ismail NH, Osman CP. Steroidal alkaloids from the apocynaceae family: their isolation and biological activity. Nat Prod Commun. 2022;17(11):1934578X221141265. [37] Xiang M-L, et al. Chemistry and bioactivities of natural steroidal alkaloids. Nat Prod Bioprospect. 2022;12(1):23. [38] Sharpe RJ, Johnson JS. A global and local desymmetrization approach to the synthesis of steroidal alkaloids: stereocontrolled total synthesis of paspaline. J Am Chem Soc. 2015;137(15):4968-71. [39] Tokuyama T, Daly J, Witkop B. Structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs. J Am Chem Soc. 1969;91(14):3931-8. [40] Zha X, et al. Efficient synthesis of solasodine, O-acetylsolasodine, and soladulcidine as anticancer steroidal alkaloids. Chem Biodivers. 2007;4(1):25-31. [41] Szabó LU, et al. Antiprotozoal nor-triterpene alkaloids from Buxus sempervirens L. Antibiotics. 2021;10(6):696. [42] Zhou B, et al. Nanomolar antimalarial agents against chloroquine-resistant Plasmodium falciparum from medicinal plants and their structure-activity relationships. J Nat Prod. 2017;80(1):96-107. [43] Lombe BK, Feineis D, Bringmann G. Dimeric naphthylisoquinoline alkaloids: polyketide-derived axially chiral bioactive quateraryls. Nat Prod Rep. 2019;36(11):1513-45. [44] Bringmann G, et al. Highly selective antiplasmodial naphthylisoquinoline alkaloids from Ancistrocladus tectorius. Phytochemistry. 2013;91:220-8. [45] Bringmann G, et al. Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry. 2003;62(3):345-9. [46] Moyo P, et al. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. Int J Parasitol Drugs Drug Resist. 2020;13:51-8. [47] Charman SA, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19(1):1-27. [48] Cihan Sorkun M, et al. ChemPlot, a Python library for chemical space visualization. Chem Methods. 2022;2(7): e202200005. |