[1] Sowndhararajan K, et al. A review of the composition of the essential oils and biological activities of angelica species. Sci Pharm. 2017;85(3):33. [2] Feng T, et al. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan Mountains of China based on nrDNA ITS sequences: phylogenetic affinities and biogeographic implications. J Plant Res. 2009;122(4):403–14. [3] Sarker S, Nahar L. Natural medicine: the genus Angelica. Curr Med Chem. 2004;11(11):1479–500. [4] Dong H, et al. Cool temperature enhances growth, ferulic acid and flavonoid biosynthesis while inhibiting polysaccharide biosynthesis in Angelica sinensis. Molecules. 2022;27(1):320. [5] Hook ILI. Danggui to Angelica sinensis root: are potential benefits to European women lost in translation? A review. J Ethnopharmacol. 2014;152(1):1–13. [6] Wei WL, et al. Angelica sinensis in China-a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116–41. [7] Alkan Turkucar S, Aktas Karacelik A, Karakose M. Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Ave-Lall.) Gill. Turk J Chem. 2021;45(3):956–66. [8] Zhang HY, et al. Angelica sinensis (Oliv.) diels in China: distribution, cultivation, utilization and variation. Genet Resourc Crop Evol. 2012;59(4):607–13. [9] Pandey AK et al. Distribution of aromatic plants in the world and their properties. Feed Additives. 2020, United States: Elsevier Science Publishing Co Inc. 89–114. [10] Sadgrove NJ, Padilla-Gonzalez GF, Phumthum M. Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants. 2022;11(6):789. [11] Perveen A, Ijaz S, Ghaffar N. Comparative phytochemical and physicochemical study of seeds of the genus Angelica L. from Neelum valley Azad Kashmir, Pakistan. Pak J Bot. 2020;52(1):257–60. [12] Kumar P, Rana V, Singh AN. Angelica glauca Edgew. - a comprehensive review. J Appl Res Med Aromat Plants. 2022;31: 100397. [13] Du J, et al. Ligustilide inhibits spontaneous and agonists-or K+ depolarization-induced contraction of rat uterus. J Ethnopharmacol. 2006;108(1):54–8. [14] Ma J, et al. The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata - a review. J Ethnopharmacol. 2019;231:152–69. [15] Han X, et al. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. Plant J. 2022;112(5):1224–37. [16] Wen J, et al. A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). Ann Bot. 2020;125(6):937–53. [17] Zhao H, et al. The Angelica dahurica: a review of traditional uses. Phytochem Pharmacol Front Pharmacol. 2022;13: 896637. [18] Liu M, et al. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data. Front Plant Sci. 2020;11: 600249. [19] Ohkura N, et al. Possible antithrombotic effects of Angelica keiskei (Ashitaba). Pharmazie. 2018;73(6):315–7. [20] Kil YS, et al. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch Pharm Res. 2017;40(6):655–75. [21] Chen Q, et al. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021;172: 108338. [22] Hua YL, et al. Urinary metabolomics analysis reveals the effect of volatile oil from Angelica sinensis on LPS-induced inflammation rats. Biomed Chromatogr. 2019;33(2): e4402. [23] Liao CY, et al. A systematic study of North American Angelica species (Apiaceae) based on nrDNA ITS and cpDNA sequences and fruit morphology. J Syst Evol. 2022;60(4):789–808. [24] Yeh JC, et al. The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. Angiogenesis. 2011;14(2):187–97. [25] Chen X-P, et al. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med. 2013;11(6):577–87. [26] Wu L, et al. The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem. 2009;16(32):4236–60. [27] Zhou D, et al. Biotransformation of neuro-inflammation inhibitor kellerin using Angelica sinensis (Oliv) Diels callus. RSC Adv. 2016;6(99):97302–12. [28] Kim CY, et al. Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY. Nat Commun. 2023;14(1):597. [29] Mazimba O. Umbelliferone: sources, chemistry and bioactivities review. Bull Fac Pharm Cairo Univ. 2017;55(2):223–32. [30] Vanholme R, et al. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants. 2019;5(10):1066–75. [31] Liu P, et al. Bioactive equivalence of combinatorial components identified in screening of an herbal medicine. Pharm Res. 2014;31(7):1788–800. [32] Song HP, et al. A chemical family-based strategy for uncovering hidden bioactive molecules and multicomponent interactions in herbal medicines. Sci Rep. 2016;6:23840. [33] Rong Y, et al. Characterization of aroma, sensory and taste properties of Angelica keiskei tea. Eur Food Res Technol. 2021;247(7):1665–77. [34] Guiné RP, Gonçalves FJ. Bioactive compounds in some culinary aromatic herbs and their effects on human health. Mini Rev Med Chem. 2016;16(11):855–66. [35] Kim DW, et al. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem. 2014;153:20–7. [36] Liang H, et al. Genome-wide identification of BAHD superfamily and functional characterization of bornyl acetyltransferases involved in the bornyl acetate biosynthesis in Wurfbainia villosa. Front Plant Sci. 2022;13: 860152. [37] Hao D-C, Xiao P-G. Pharmaceutical resource discovery from traditional medicinal plants: pharmacophylogeny and pharmacophylogenomics. Chin Herb Med. 2020;12(2):104–17. [38] Kang KB, et al. Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. Plant J. 2019;98(6):1134–44. [39] Saslis-Lagoudakis CH, et al. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PLoS ONE. 2011;6(7): e22275. [40] Bertuzzi AS, et al. Detection of volatile compounds of cheese and their contribution to the flavor profile of surface-ripened cheese. Compr Rev Food Sci Food Saf. 2018;17(2):371–90. [41] Oksanen J et al. Multivariate analysis of ecological communities in R: vegan tutorial. R package version 1.7. 2013. [42] Chong J, Xia J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics. 2018;34(24):4313–4. [43] Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18. [44] Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. [45] Nguyen L-T, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. [46] Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation. 2021;2(3): 100141. |