整合生物学期刊网

应用天然产物 ›› 2018, Vol. 8 ›› Issue (6): 405-412.DOI: 10.1007/s13659-018-0185-7

• REVIEWS •    下一篇

Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii)

Yan-Jie Huang1,2,3, Xing-Rong Peng1,2, Ming-Hua Qiu1,2,3   

  1. 1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China;
    2 Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China;
    3 University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
  • 收稿日期:2018-04-20 修回日期:2018-07-24 出版日期:2018-12-24 发布日期:2018-11-21
  • 通讯作者: Ming-Hua Qiu
  • 基金资助:
    This research work was financially supported by NSFC project and YiKe R&D Project (KIB-20140708Q), as well as Foundation of Key Laboratory of Tobacco Chemistry of Yunnan Province (KCFZ-2017-1096) and Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2010-ZZ14).

Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii)

Yan-Jie Huang1,2,3, Xing-Rong Peng1,2, Ming-Hua Qiu1,2,3   

  1. 1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China;
    2 Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China;
    3 University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
  • Received:2018-04-20 Revised:2018-07-24 Online:2018-12-24 Published:2018-11-21
  • Contact: Ming-Hua Qiu
  • Supported by:
    This research work was financially supported by NSFC project and YiKe R&D Project (KIB-20140708Q), as well as Foundation of Key Laboratory of Tobacco Chemistry of Yunnan Province (KCFZ-2017-1096) and Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2010-ZZ14).

摘要: Maca (Lepidium meyenii Walp.), a famous food supplement, has drawn an unprecedented international interest over the last two decades. It was assumed that glucosinolates, macamides, macaenes, and alkaloids are the main bioactive components of Maca before. Recently, a series of novel thiohydantoins which generally exhibit a variety of activities have been isolated from Maca. This review focuses on the progress on the main bioactive components of Maca and their biosynthetic pathway, which indicates that macamides, thiohydantoins, and some alkaloids may originate from glucosinolates. Interestingly, thiohydantoins from Maca are the first type of thiohydantoin derivatives to be found from a natural source and may contribute to some significant effects of Maca.

关键词: Thiohydantoins, Biosynthetic pathway, Maca (Lepidium meyenii Walp.), Chemical constituents

Abstract: Maca (Lepidium meyenii Walp.), a famous food supplement, has drawn an unprecedented international interest over the last two decades. It was assumed that glucosinolates, macamides, macaenes, and alkaloids are the main bioactive components of Maca before. Recently, a series of novel thiohydantoins which generally exhibit a variety of activities have been isolated from Maca. This review focuses on the progress on the main bioactive components of Maca and their biosynthetic pathway, which indicates that macamides, thiohydantoins, and some alkaloids may originate from glucosinolates. Interestingly, thiohydantoins from Maca are the first type of thiohydantoin derivatives to be found from a natural source and may contribute to some significant effects of Maca.

Key words: Maca (Lepidium meyenii Walp.), Chemical constituents, Thiohydantoins, Biosynthetic pathway