Bulletin of Botanical Research ›› 2023, Vol. 43 ›› Issue (3): 421-431.doi: 10.7525/j.issn.1673-5102.2023.03.012
• Molecular biology • Previous Articles Next Articles
Yuanyuan CAI1, Jibenben XIA1, Wenhan YING1, Jieyao WANG1, Tao XIE1, Kongya XING1, Xuanjun FENG2, Xuejun HUA1
Received:
2022-11-25
Online:
2023-05-20
Published:
2023-06-06
About author:
CAI Yuanyuan(1997—),female,master,mainly engaged in plant molecular and physiology research.
Supported by:
CLC Number:
Yuanyuan CAI, Jibenben XIA, Wenhan YING, Jieyao WANG, Tao XIE, Kongya XING, Xuanjun FENG, Xuejun HUA. Detailed Phenotypical Analysis on the Mutant ssr1-2 Encoding a Mitochondrial Protein of Arabidopsis thaliana[J]. Bulletin of Botanical Research, 2023, 43(3): 421-431.
Fig.2
Phenotypic analysis of different linesThe statistical analysis of the primary root length(A) and leaf area(B) of each line grown for 1-7 d,14 d and 21 d; The lateral root density(C) and lateral root length/main root length ratio(D) of 2-week-old seedlings of WS and ssr1-2;The height(E),silique length(F),and silique width(G) of each line grown for 45 d;All data were means±SD from at least 12 seedlings;Different lowercase letters represented significant differences among lines(P<0.05)
Fig.3
The micrografting between ssr1-2 and WSA.The schematic diagram of micrografting process between ssr1-2 and WS wild type;The seedlings grafted with ssr1-2 and WS for 2 weeks were observed and measured the main root length(B) and crown width(C) were measured and statistically analyzed;All data were mean±SD of at least 8 grafted plantlets;Different letters represented significant differences(P<0.05)
Table 1
Effect of exogenous proline on the relative germination rate of different lines
时间 Time /d | 相对萌发率 Relative germination rate /% | ||||
---|---|---|---|---|---|
WS | ssr1-2 | ssr1-2C | EMS143 | EMS145 | |
1 | 74.80 | 31.06 | 79.08 | 63.11 | 108.50 |
2 | 98.95 | 96.21 | 98.91 | 121.44 | 100.50 |
3 | 99.42 | 100.52 | 94.07 | 99.50 | 98.89 |
4 | 99.22 | 98.11 | 89.17 | 105.07 | 95.98 |
5 | 101.05 | 98.13 | 93.24 | 106.63 | 98.50 |
6 | 101.95 | 101.01 | 95.65 | 111.17 | 96.48 |
7 | 101.23 | 100.29 | 95.65 | 111.17 | 95.50 |
Table 2
Effect of exogenous proline on growth of different lines
生长条件 Growth condition | 株系 Line | 指标Index | ||
---|---|---|---|---|
主根长 Primary foot length /cm | 叶片面积 Leaf area /cm2 | 叶绿素质量分数 Chlorophyll content /mg·g-1 | ||
MS培养基 MS medium | WS | 2.13 | 0.61 | 0.72 |
ssr1-2 | 0.37 | 0.61 | 0.65 | |
ssr1-2C | 2.16 | 0.63 | 0.73 | |
EMS143 | 2.01 | 0.70 | 0.57 | |
EMS145 | 1.98 | 0.66 | 0.67 | |
20 mmol·L-1 Pro的MS培养基 MS medium containg 20 mmol·L-1 Pro | WS | 1.00 | 0.43 | 0.27 |
ssr1-2 | 0.16 | 0.37 | 0.17 | |
ssr1-2C | 1.04 | 0.43 | 0.27 | |
EMS143 | 0.44 | 0.44 | 0.27 | |
EMS145 | 0.42 | 0.53 | 0.40 |
Table 3
The effect of iron concentration on growth of different lines
指标 Index | 株系 Line | 处理条件 Treat condition | ||||
---|---|---|---|---|---|---|
处理1 Treat 1 | 处理2 Treat 2 | 处理3 Treat 3 | 处理4 Treat 4 | 处理5 Treat 5 | ||
主根长 Primary foot length /cm | WS | 0.61 | 2.49 | 2.09 | 1.90 | 1.41 |
ssr1-2 | 0.47 | 0.46 | 0.46 | 0.49 | 0.46 | |
ssr1-2C | 0.63 | 2.44 | 1.99 | 1.95 | 1.46 | |
EMS143 | 0.60 | 1.90 | 1.82 | 1.98 | 1.68 | |
EMS145 | 0.45 | 1.18 | 1.25 | 0.88 | 0.65 | |
净生长量 Net growth of primary root /cm | WS | 0.04 | 0.03 | 0.39 | 0.22 | 0.35 |
ssr1-2 | 0.06 | 0.02 | 0.03 | 0.01 | 0.01 | |
ssr1-2C | 0.05 | 0.03 | 0.31 | 0.25 | 0.29 | |
EMS143 | 0.04 | 0.03 | 0.26 | 0.34 | 0.31 | |
EMS145 | 0.03 | 0.01 | 0.12 | 0.16 | 0.13 | |
侧根长 Lateral root length /cm | WS | 0.23 | 0.45 | 0.69 | 0.60 | 0.41 |
ssr1-2 | 0.29 | 0.19 | 0.22 | 0.25 | 0.20 | |
ssr1-2C | 0.23 | 0.45 | 0.68 | 0.64 | 0.42 | |
EMS143 | 0.21 | 0.81 | 0.80 | 1.03 | 0.75 | |
EMS145 | 0.20 | 0.44 | 0.78 | 0.81 | 0.68 | |
侧根密度 Lateral root density/(number·cm-1) | WS | 3.22 | 1.72 | 1.91 | 1.89 | 2.09 |
ssr1-2 | 4.44 | 4.67 | 4.83 | 4.67 | 4.10 | |
ssr1-2C | 3.47 | 1.74 | 1.89 | 1.84 | 2.00 | |
EMS143 | 1.71 | 2.03 | 3.37 | 1.64 | 1.95 | |
EMS145 | 2.82 | 2.19 | 2.93 | 3.94 | 3.23 | |
叶片面积 Leaf area /cm2 | WS | 0.72 | 0.73 | 0.73 | 0.75 | 0.75 |
ssr1-2 | 0.67 | 0.72 | 0.66 | 0.63 | 0.62 | |
ssr1-2C | 0.74 | 0.76 | 0.75 | 0.78 | 0.77 | |
EMS143 | 0.52 | 0.67 | 0.67 | 0.68 | 0.69 | |
EMS145 | 0.52 | 0.68 | 0.70 | 0.67 | 0.67 | |
叶绿素质量分数 Chlorophyll content /(mg·g-1) | WS | 0.51 | 1.17 | 1.12 | 1.20 | 1.26 |
ssr1-2 | 0.69 | 0.98 | 1.20 | 0.97 | 1.07 | |
ssr1-2C | 0.53 | 1.22 | 1.11 | 1.16 | 1.19 | |
EMS143 | 0.41 | 0.97 | 0.99 | 0.94 | 0.94 | |
EMS145 | 0.34 | 1.13 | 1.11 | 0.91 | 0.94 |
1 | SZABADOS L, SAVOURÉ A.Proline:a multifunctional amino acid[J].Trends in Plant Science,2010,15(2):89-97. |
2 | KAUR G, ASTHIR B.Proline:a key player in plant abiotic stress tolerance[J].Biologia Plantarum,2015,59(4):609-619. |
3 | MATTIOLI R, MARCHESE D, D’Angeli S,et al.Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis [J].Plant Molecular Biology,2008,66(3):277-288. |
4 | MANI S, VAN DE COTTE B, VAN MONTAGU M,et al.Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis [J].Plant Physiology,2002,128(1):73-83. |
5 | NANJO T, FUJITA M, SEKI M,et al.Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase[J].Plant and Cell Physiology,2003,44(5):541-548. |
6 | DEUSCHLE K, FUNCK D, FORLANI G,et al.The role of Delta(1)-Pyrroline-5-carboxylate dehydrogenase in proline degradation[J].The Plant Cell,2004,16(12):3413-3425. |
7 | LEE Y H, FOSTER J, CHEN J,et al.AAP1 transports uncharged amino acids into roots of Arabidopsis [J].The Plant Journal,2007,50(2):305-319. |
8 | WANG T, CHEN Y, ZHANG M,et al. Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources[J].Frontiers in Plant Science,2017,8:2182. |
9 | HELLMANN H, FUNCK D, RENTSCH D,et al.Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application[J].Plant Physiology,2000,123(2):779-789. |
10 | FENG X J, HU Y, ZHANG W X,et al.Revisiting the role of delta-1-pyrroline-5-carboxylate synthetase in drought-tolerant crop breeding[J].The Crop Journal,2022,10(4):1213-1218. |
11 | HILDEBRANDT T M, NESI A N, ARAÚJO W L,et al.Amino acid catabolism in plants[J].Molecular Plant,2015,8(11),1563-1579. |
12 | BONNER C A, WILLIAMS D S, ALDRICH H C,et al.Antagonism by L-glutamine of toxicity and growth inhibition caused by other amino acids in suspension cultures of Nicotiana silvestris [J].Plant Science,1996,113(1):43-58. |
13 | ZHANG M, WANG C P, LIN Q F,et al.A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis [J].The Plant Journal,2015,83(4):582-599. |
14 | HAN H L, LIU J, FENG X J,et al.SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis [J].Journal of Plant Physiology,2021,256,153325. |
15 | TSUTSUI H, YANAGISAWA N, KAWAKATSU Y,et al.Micrografting device for testing systemic signaling in Arabidopsis [J].The Plant Journal,2020,103(2):918-929. |
16 | GIEHL R F H, LIMA J E, VON WIRÉN N.Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution[J].The Plant Cell,2012,24(1):33-49. |
17 | CABASSA-HOURTON C, SCHERTL P, BORDENAVE-JACQUEMIN M,et al.Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana [J].Biochemical Journal,2016,473(17),2623-2634. |
18 | TRAN D H, KESAVAN R, RION H,et al.Mitochondrial NADP+ is essential for proline biosynthesis during cell growth[J].Nature Metabolism,2021,3(4):571-585. |
19 | ZHU J J, SCHWÖRER S, BERISA M,et al.Mitochondrial NADP(H) generation is essential for proline biosynthesis[J].Science,2021,372(6545):968-972. |
20 | MILLER G, HONIG A, STEIN H,et al.Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes[J].Journal of Biological Chemistry,2009,284(39):26482-26492. |
[1] | Wei LIU, Ziqiang ZHU. Recent Advances on Plant Root Thermomorphogenesis [J]. Bulletin of Botanical Research, 2024, 44(1): 1-7. |
[2] | Zhuanzhuan JIANG, Li GONG, Yaling SONG. The Chloroplast Division Protein PARC6 Affected the Growth of Cotyledon and Leaf in Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2023, 43(5): 700-710. |
[3] | Sheng ZHENG, Haixia GAO, Min SU, Shanghuan LU, Tengguo ZHANG, Guofan WU. Exogenous Sucrose Affected AtKEA1 and AtKEA2 to Regulate Root Growth of Seedling in Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2023, 43(4): 562-571. |
[4] | Yuping QIU, Yichuan WANG, Hongwei GUO. Research Progress on the Regulatory Mechanism of Plant Root Hair Development [J]. Bulletin of Botanical Research, 2023, 43(3): 321-332. |
[5] | Mengjiao Wang, Yuxue Cao, Yongsheng Xu, Fenge Ding, Qiao Su. Overexpression of Marine Microbial Metagenomic MbCSP Enhanced Drought and Cold Tolerance of Transgenic Arabidopsisthaliana [J]. Bulletin of Botanical Research, 2022, 42(2): 243-251. |
[6] | ZHANG Yu-Qing, LIU Ye, QU Chun-Pu, LIU Guan-Jun, YANG Tian-Tian, YANG Cheng-Jun. Resistance Analysis of Transgenic PnDof30 Arabidopsis under Abiotic Stress [J]. Bulletin of Botanical Research, 2020, 40(3): 407-415. |
[7] | HE Hao, ZHU Guo-Qing, CHEN Shi-Ya, XU Chang, JIN Shu-Mei. Cloning of LpPEX7 Gene from Lilium pumilum and Its Expression Characteristics under Salt Stress [J]. Bulletin of Botanical Research, 2020, 40(2): 274-283. |
[8] | LI Zi-Yi, HE Zi-Hang, LU Hui-Jun, WANG Yu-Cheng, JI Xiao-Yu. Study on Salt Tolerance of AtUNE12 Gene in Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2020, 40(2): 257-265. |
[9] | WANG Shuang, CHENG Yu-Xiang, XIA De-An. Identification of Key Amino Acid Sites in AtGDPD-Like3 with Role in Arabidopsis Root Hairs [J]. Bulletin of Botanical Research, 2020, 40(1): 79-84. |
[10] | LI Peng, HUAN Zhao-Wei, DING Lan. Rabdosinate Regulates Polar Auxin Carriers PIN1,PIN3 and PIN4 and Inhibits Root Growth of Arabidopsis thaliana Seedlings [J]. Bulletin of Botanical Research, 2019, 39(6): 908-916. |
[11] | FAN Er-Qin, LIU Cai-Xia, FU Peng-Yue, YANG Chuan-Ping, QU Guan-Zheng. Expression Pattern of PagC3H3 Gene in Populus alba×P.glandulosa [J]. Bulletin of Botanical Research, 2019, 39(4): 521-528. |
[12] | ZHAO Min, WANG Yue-Xuan, XU Yun-Fei, ZHAO Qi-An, LIU Bo, YANG Ning. Relationship between H2S and ABA Signaling in Arabidopsis thaliana under Drought Stress [J]. Bulletin of Botanical Research, 2019, 39(1): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||